These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12393208)

  • 1. Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae.
    Enomoto K; Arikawa Y; Muratsubaki H
    FEMS Microbiol Lett; 2002 Sep; 215(1):103-8. PubMed ID: 12393208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble fumarate reductase isoenzymes from Saccharomyces cerevisiae are required for anaerobic growth.
    Arikawa Y; Enomoto K; Muratsubaki H; Okazaki M
    FEMS Microbiol Lett; 1998 Aug; 165(1):111-6. PubMed ID: 9711846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1.
    Camarasa C; Faucet V; Dequin S
    Yeast; 2007 May; 24(5):391-401. PubMed ID: 17345583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene.
    Muratsubaki H; Enomoto K
    Arch Biochem Biophys; 1998 Apr; 352(2):175-81. PubMed ID: 9587404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GiFRD encodes a protein involved in anaerobic growth in the arbuscular mycorrhizal fungus Glomus intraradices.
    Sędzielewska KA; Vetter K; Bode R; Baronian K; Watzke R; Kunze G
    Fungal Genet Biol; 2012 Apr; 49(4):313-21. PubMed ID: 22343635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space.
    Neal SE; Dabir DV; Wijaya J; Boon C; Koehler CM
    Mol Biol Cell; 2017 Oct; 28(21):2773-2785. PubMed ID: 28814504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of maintaining an oxidizing environment under anaerobiosis by soluble fumarate reductase.
    Kim S; Kim CM; Son YJ; Choi JY; Siegenthaler RK; Lee Y; Jang TH; Song J; Kang H; Kaiser CA; Park HH
    Nat Commun; 2018 Nov; 9(1):4867. PubMed ID: 30451826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
    Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L
    EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.
    Bekers KM; Heijnen JJ; van Gulik WM
    Yeast; 2015 Aug; 32(8):541-57. PubMed ID: 26059529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and sequencing of the gene encoding the soluble fumarate reductase from Saccharomyces cerevisiae.
    Enomoto K; Ohki R; Muratsubaki H
    DNA Res; 1996 Aug; 3(4):263-7. PubMed ID: 8946166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1).
    Valadi H; Valadi A; Ansell R; Gustafsson L; Adler L; Norbeck J; Blomberg A
    Curr Genet; 2004 Feb; 45(2):90-5. PubMed ID: 14652693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.
    Tani T; Taguchi H; Akamatsu T
    J Biosci Bioeng; 2017 May; 123(5):613-620. PubMed ID: 28126230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae.
    Arikawa Y; Kuroyanagi T; Shimosaka M; Muratsubaki H; Enomoto K; Kodaira R; Okazaki M
    J Biosci Bioeng; 1999; 87(1):28-36. PubMed ID: 16232421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures.
    Geertman JM; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the AFRD1-encoded fumarate reductase in hypoxia and osmotolerance in Arxula adeninivorans.
    Sędzielewska KA; Böer E; Bellebna C; Wartmann T; Bode R; Melzer M; Baronian K; Kunze G
    FEMS Yeast Res; 2012 Dec; 12(8):924-37. PubMed ID: 22900669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of stable recombinant Osm1 noncovalently bound with flavin adenosine dinucleotide cofactor for structural study.
    Kim S; Park HH
    Acta Crystallogr F Struct Biol Commun; 2019 Mar; 75(Pt 3):159-165. PubMed ID: 30839289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.