BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12393751)

  • 1. Mutations in the relay loop region result in dominant-negative inhibition of myosin II function in Dictyostelium.
    Tsiavaliaris G; Fujita-Becker S; Batra R; Levitsky DI; Kull FJ; Geeves MA; Manstein DJ
    EMBO Rep; 2002 Nov; 3(11):1099-105. PubMed ID: 12393751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of proteins involved in cytokinesis of Dictyostelium.
    Adachi H
    Cell Struct Funct; 2001 Dec; 26(6):571-5. PubMed ID: 11942611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acids 519-524 of Dictyostelium myosin II form a surface loop that aids actin binding by facilitating a conformational change.
    Uyeda TQ; Patterson B; Mendoza L; Hiratsuka Y
    J Muscle Res Cell Motil; 2002; 23(7-8):685-95. PubMed ID: 12952067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dictyostelium myosin II as a model to study the actin-myosin interactions during force generation.
    Sasaki N; Ohkura R; Sutoh K
    J Muscle Res Cell Motil; 2002; 23(7-8):697-702. PubMed ID: 12952068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling.
    Conibear PB; Málnási-Csizmadia A; Bagshaw CR
    Biochemistry; 2004 Dec; 43(49):15404-17. PubMed ID: 15581352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II.
    Gyimesi M; Kintses B; Bodor A; Perczel A; Fischer S; Bagshaw CR; Málnási-Csizmadia A
    J Biol Chem; 2008 Mar; 283(13):8153-63. PubMed ID: 18211892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological, biochemical, and kinetic effects of mutations of the cardiomyopathy loop of Dictyostelium myosin II: importance of ALA400.
    Liu X; Shu S; Kovács M; Korn ED
    J Biol Chem; 2005 Jul; 280(29):26974-83. PubMed ID: 15897189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of cleavage furrow ingression in Dictyostelium.
    Weber I
    Cell Struct Funct; 2001 Dec; 26(6):577-84. PubMed ID: 11942612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic approaches to dissect the mechanisms of two distinct pathways of cell cycle-coupled cytokinesis in Dictyostelium.
    Nagasaki A; Hibi M; Asano Y; Uyeda TQ
    Cell Struct Funct; 2001 Dec; 26(6):585-91. PubMed ID: 11942613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of the N-terminal region of myosin-2.
    Fujita-Becker S; Tsiavaliaris G; Ohkura R; Shimada T; Manstein DJ; Sutoh K
    J Biol Chem; 2006 Nov; 281(47):36102-9. PubMed ID: 16982629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin.
    Iwase K; Tanaka M; Hirose K; Uyeda TQP; Honda H
    PLoS One; 2017; 12(7):e0181171. PubMed ID: 28742155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling pathways regulating Dictyostelium myosin II.
    De la Roche MA; Smith JL; Betapudi V; Egelhoff TT; Côté GP
    J Muscle Res Cell Motil; 2002; 23(7-8):703-18. PubMed ID: 12952069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering lysine reactivity as a conformational sensor in the Dictyostelium myosin II motor domain.
    Kovács M; Tóth J; Málnási-Csizmadia A; Bagshaw CR; Nyitray L
    J Muscle Res Cell Motil; 2004; 25(1):95-102. PubMed ID: 15160493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Dictyostelium discoideum myosin II for the introduction of site-specific fluorescence probes.
    Wakelin S; Conibear PB; Woolley RJ; Floyd DN; Bagshaw CR; Kovács M; Málnási-Csizmadia A
    J Muscle Res Cell Motil; 2002; 23(7-8):673-83. PubMed ID: 12952066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation.
    Ren Y; West-Foyle H; Surcel A; Miller C; Robinson DN
    Mol Biol Cell; 2014 Dec; 25(25):4150-65. PubMed ID: 25318674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of the seesaw mechanism of the relay region that moves the myosin lever arm.
    Kintses B; Yang Z; Málnási-Csizmadia A
    J Biol Chem; 2008 Dec; 283(49):34121-8. PubMed ID: 18854311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional impact of site-directed methionine oxidation in myosin.
    Klein JC; Moen RJ; Smith EA; Titus MA; Thomas DD
    Biochemistry; 2011 Nov; 50(47):10318-27. PubMed ID: 21988699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C.
    Chinthalapudi K; Heissler SM; Preller M; Sellers JR; Manstein DJ
    Elife; 2017 Dec; 6():. PubMed ID: 29256864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of the function of myosin loop 4 in the actin-myosin interaction.
    Gyimesi M; Tsaturyan AK; Kellermayer MS; Málnási-Csizmadia A
    Biochemistry; 2008 Jan; 47(1):283-91. PubMed ID: 18067324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain.
    Uyeda TQ; Iwadate Y; Umeki N; Nagasaki A; Yumura S
    PLoS One; 2011; 6(10):e26200. PubMed ID: 22022566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.