These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
519 related articles for article (PubMed ID: 12393873)
1. SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. Raju GP; Dimova N; Klein PS; Huang HC J Biol Chem; 2003 Jan; 278(1):428-37. PubMed ID: 12393873 [TBL] [Abstract][Full Text] [Related]
2. A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). Lin Y; Martin J; Gruendler C; Farley J; Meng X; Li BY; Lechleider R; Huff C; Kim RH; Grasser WA; Paralkar V; Wang T BMC Cell Biol; 2002 Jun; 3():15. PubMed ID: 12097147 [TBL] [Abstract][Full Text] [Related]
3. DRAGON, a bone morphogenetic protein co-receptor. Samad TA; Rebbapragada A; Bell E; Zhang Y; Sidis Y; Jeong SJ; Campagna JA; Perusini S; Fabrizio DA; Schneyer AL; Lin HY; Brivanlou AH; Attisano L; Woolf CJ J Biol Chem; 2005 Apr; 280(14):14122-9. PubMed ID: 15671031 [TBL] [Abstract][Full Text] [Related]
4. Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. Shibuya H; Iwata H; Masuyama N; Gotoh Y; Yamaguchi K; Irie K; Matsumoto K; Nishida E; Ueno N EMBO J; 1998 Feb; 17(4):1019-28. PubMed ID: 9463380 [TBL] [Abstract][Full Text] [Related]
5. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Osada S; Ohmori SY; Taira M Development; 2003 May; 130(9):1783-94. PubMed ID: 12642484 [TBL] [Abstract][Full Text] [Related]
6. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Faure S; Lee MA; Keller T; ten Dijke P; Whitman M Development; 2000 Jul; 127(13):2917-31. PubMed ID: 10851136 [TBL] [Abstract][Full Text] [Related]
7. Intracellular signaling of osteogenic protein-1 through Smad5 activation. Tamaki K; Souchelnytskyi S; Itoh S; Nakao A; Sampath K; Heldin CH; ten Dijke P J Cell Physiol; 1998 Nov; 177(2):355-63. PubMed ID: 9766532 [TBL] [Abstract][Full Text] [Related]
8. Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. Nishimura R; Kato Y; Chen D; Harris SE; Mundy GR; Yoneda T J Biol Chem; 1998 Jan; 273(4):1872-9. PubMed ID: 9442019 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. Moore RK; Otsuka F; Shimasaki S J Biol Chem; 2003 Jan; 278(1):304-10. PubMed ID: 12419820 [TBL] [Abstract][Full Text] [Related]
10. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Kretzschmar M; Liu F; Hata A; Doody J; Massagué J Genes Dev; 1997 Apr; 11(8):984-95. PubMed ID: 9136927 [TBL] [Abstract][Full Text] [Related]
11. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells. Wang W; Mariani FV; Harland RM; Luo K Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14394-9. PubMed ID: 11121043 [TBL] [Abstract][Full Text] [Related]
12. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Li L; Xin H; Xu X; Huang M; Zhang X; Chen Y; Zhang S; Fu XY; Chang Z Mol Cell Biol; 2004 Jan; 24(2):856-64. PubMed ID: 14701756 [TBL] [Abstract][Full Text] [Related]
13. Mouse smad8 phosphorylation downstream of BMP receptors ALK-2, ALK-3, and ALK-6 induces its association with Smad4 and transcriptional activity. Kawai S; Faucheu C; Gallea S; Spinella-Jaegle S; Atfi A; Baron R; Roman SR Biochem Biophys Res Commun; 2000 May; 271(3):682-7. PubMed ID: 10814522 [TBL] [Abstract][Full Text] [Related]
14. Interaction with Smad4 is indispensable for suppression of BMP signaling by c-Ski. Takeda M; Mizuide M; Oka M; Watabe T; Inoue H; Suzuki H; Fujita T; Imamura T; Miyazono K; Miyazawa K Mol Biol Cell; 2004 Mar; 15(3):963-72. PubMed ID: 14699069 [TBL] [Abstract][Full Text] [Related]
15. Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. Mochizuki T; Miyazaki H; Hara T; Furuya T; Imamura T; Watabe T; Miyazono K J Biol Chem; 2004 Jul; 279(30):31568-74. PubMed ID: 15148321 [TBL] [Abstract][Full Text] [Related]
16. Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. Harada J; Kokura K; Kanei-Ishii C; Nomura T; Khan MM; Kim Y; Ishii S J Biol Chem; 2003 Oct; 278(40):38998-9005. PubMed ID: 12874272 [TBL] [Abstract][Full Text] [Related]
17. Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1. Messenger NJ; Kabitschke C; Andrews R; Grimmer D; Núñez Miguel R; Blundell TL; Smith JC; Wardle FC Dev Cell; 2005 Apr; 8(4):599-610. PubMed ID: 15809041 [TBL] [Abstract][Full Text] [Related]
18. Regulation of Hex gene expression by a Smads-dependent signaling pathway. Zhang W; Yatskievych TA; Cao X; Antin PB J Biol Chem; 2002 Nov; 277(47):45435-41. PubMed ID: 12270938 [TBL] [Abstract][Full Text] [Related]
19. In vivo analysis using variants of zebrafish BMPR-IA: range of action and involvement of BMP in ectoderm patterning. Nikaido M; Tada M; Takeda H; Kuroiwa A; Ueno N Development; 1999 Jan; 126(1):181-90. PubMed ID: 9834197 [TBL] [Abstract][Full Text] [Related]
20. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Murakami G; Watabe T; Takaoka K; Miyazono K; Imamura T Mol Biol Cell; 2003 Jul; 14(7):2809-17. PubMed ID: 12857866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]