These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 12394761)
1. Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: studies with a new animal model. Paterson RF; Lifshitz DA; Lingeman JE; Evan AP; Connors BA; Fineberg NS; Williams JC; McAteer JA J Urol; 2002 Nov; 168(5):2211-5. PubMed ID: 12394761 [TBL] [Abstract][Full Text] [Related]
2. The efficacy of extracorporeal shock wave lithotripsy for isolated lower pole calculi compared with isolated middle and upper caliceal calculi. Obek C; Onal B; Kantay K; Kalkan M; Yalçin V; Oner A; Solok V; Tansu N J Urol; 2001 Dec; 166(6):2081-4; discussion 2085. PubMed ID: 11696710 [TBL] [Abstract][Full Text] [Related]
3. Is lower pole caliceal anatomy predictive of extracorporeal shock wave lithotripsy success for primary lower pole kidney stones? Sorensen CM; Chandhoke PS J Urol; 2002 Dec; 168(6):2377-82; discussion 2382. PubMed ID: 12441921 [TBL] [Abstract][Full Text] [Related]
4. Shock wave lithotripsy of stones implanted in the proximal ureter of the pig. Paterson RF; Kim SC; Kuo RL; Lingeman JE; Evan AP; Connors BA; Williams JC; McAteer JA J Urol; 2005 Apr; 173(4):1391-4. PubMed ID: 15758811 [TBL] [Abstract][Full Text] [Related]
5. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute. Handa RK; McAteer JA; Evan AP; Connors BA; Pishchalnikov YA; Gao S J Urol; 2009 Feb; 181(2):884-9. PubMed ID: 19095269 [TBL] [Abstract][Full Text] [Related]
6. Comparison of tissue injury from focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy. Connors BA; Evan AP; Blomgren PM; Hsi RS; Harper JD; Sorensen MD; Wang YN; Simon JC; Paun M; Starr F; Cunitz BW; Bailey MR; Lingeman JE J Urol; 2014 Jan; 191(1):235-41. PubMed ID: 23917165 [TBL] [Abstract][Full Text] [Related]
7. Matched pair analysis of shock wave lithotripsy effectiveness for comparison of lithotriptors. Portis AJ; Yan Y; Pattaras JG; Andreoni C; Moore R; Clayman R J Urol; 2003 Jan; 169(1):58-62. PubMed ID: 12478102 [TBL] [Abstract][Full Text] [Related]
8. A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma. Graber SF; Danuser H; Hochreiter WW; Studer UE J Urol; 2003 Jan; 169(1):54-7. PubMed ID: 12478101 [TBL] [Abstract][Full Text] [Related]
9. Does rate matter? The results of a randomized controlled trial of 60 versus 120 shocks per minute for shock wave lithotripsy of renal calculi. Davenport K; Minervini A; Keoghane S; Parkin J; Keeley FX; Timoney AG J Urol; 2006 Nov; 176(5):2055-8; discussion 2058. PubMed ID: 17070254 [TBL] [Abstract][Full Text] [Related]
10. Percutaneous stone implantation in the pig kidney: a new animal model for lithotripsy research. Paterson RF; Lingeman JE; Evan AP; Connors BA; Williams JC; McAteer JA J Endourol; 2002 Oct; 16(8):543-7. PubMed ID: 12470460 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation. Sheir KZ; Zabihi N; Lee D; Teichman JM; Rehman J; Sundaram CP; Heimbach D; Hesse A; Delvecchio F; Zhong P; Preminger GM; Clayman RV J Urol; 2003 Dec; 170(6 Pt 1):2190-4. PubMed ID: 14634376 [TBL] [Abstract][Full Text] [Related]
12. The impact of caliceal pelvic anatomy on stone clearance after shock wave lithotripsy for pediatric lower pole stones. Onal B; Demirkesen O; Tansu N; Kalkan M; Altintaş R; Yalçin V J Urol; 2004 Sep; 172(3):1082-6. PubMed ID: 15311043 [TBL] [Abstract][Full Text] [Related]
13. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. Pace KT; Ghiculete D; Harju M; Honey RJ; J Urol; 2005 Aug; 174(2):595-9. PubMed ID: 16006908 [TBL] [Abstract][Full Text] [Related]
14. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. Zhou Y; Cocks FH; Preminger GM; Zhong P J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of a system for classification of stones and their sites in kidneys treated with extracorporeal shock wave lithotripsy. Pettersson B; Tiselius HG; Rahmqvist M Scand J Urol Nephrol; 1990; 24(4):293-9. PubMed ID: 2274754 [TBL] [Abstract][Full Text] [Related]
16. Does size and site matter for renal stones up to 30-mm in size in children treated by extracorporeal lithotripsy? Ather MH; Noor MA Urology; 2003 Jan; 61(1):212-5; discussion 215. PubMed ID: 12559298 [TBL] [Abstract][Full Text] [Related]
17. Slow vs rapid delivery rate shock wave lithotripsy for pediatric renal urolithiasis: a prospective randomized study. Salem HK; Fathy H; Elfayoumy H; Aly H; Ghonium A; Mohsen MA; Hegazy Ael R J Urol; 2014 May; 191(5):1370-4. PubMed ID: 24262496 [TBL] [Abstract][Full Text] [Related]
18. Variability of renal stone fragility in shock wave lithotripsy. Williams JC; Saw KC; Paterson RF; Hatt EK; McAteer JA; Lingeman JE Urology; 2003 Jun; 61(6):1092-6; discussion 1097. PubMed ID: 12809867 [TBL] [Abstract][Full Text] [Related]
19. Stone fragility: its therapeutic implications in shock wave lithotripsy of upper urinary tract stones. Ansari MS; Gupta NP; Seth A; Hemal AK; Dogra PN; Singh TP Int Urol Nephrol; 2003; 35(3):387-92. PubMed ID: 15160546 [TBL] [Abstract][Full Text] [Related]
20. Predictors of lower pole renal stone clearance after extracorporeal shock wave lithotripsy. Sumino Y; Mimata H; Tasaki Y; Ohno H; Hoshino T; Nomura T; Nomura Y J Urol; 2002 Oct; 168(4 Pt 1):1344-7. PubMed ID: 12352389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]