BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12395189)

  • 21. [Cloning of a MADS box protein gene (GhMADS1) from cotton (Gossypium hirsutum L.)].
    Zheng SY; Guo YL; Xiao YH; Luo M; Hou L; Luo XY; Pei Y
    Yi Chuan Xue Bao; 2004 Oct; 31(10):1136-41. PubMed ID: 15552050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy.
    Li H; Liang W; Yin C; Zhu L; Zhang D
    Plant Physiol; 2011 May; 156(1):263-74. PubMed ID: 21444646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa.
    Leseberg CH; Li A; Kang H; Duvall M; Mao L
    Gene; 2006 Aug; 378():84-94. PubMed ID: 16831523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice.
    Yamaki S; Nagato Y; Kurata N; Nonomura K
    Dev Biol; 2011 Mar; 351(1):208-16. PubMed ID: 21146515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development.
    Chen YY; Lee PF; Hsiao YY; Wu WL; Pan ZJ; Lee YI; Liu KW; Chen LJ; Liu ZJ; Tsai WC
    Plant Cell Physiol; 2012 Jun; 53(6):1053-67. PubMed ID: 22499266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dicot and monocot plants differ in retinoblastoma-related protein subfamilies.
    Lendvai A; Pettkó-Szandtner A; Csordás-Tóth E; Miskolczi P; Horváth GV; Györgyey J; Dudits D
    J Exp Bot; 2007; 58(7):1663-75. PubMed ID: 17389586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia.
    Vandenbussche M; Zethof J; Souer E; Koes R; Tornielli GB; Pezzotti M; Ferrario S; Angenent GC; Gerats T
    Plant Cell; 2003 Nov; 15(11):2680-93. PubMed ID: 14576291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of MADS box protein-protein interactions in living plant cells.
    Immink RG; Gadella TW; Ferrario S; Busscher M; Angenent GC
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2416-21. PubMed ID: 11854533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redefining C and D in the petunia ABC.
    Heijmans K; Ament K; Rijpkema AS; Zethof J; Wolters-Arts M; Gerats T; Vandenbussche M
    Plant Cell; 2012 Jun; 24(6):2305-17. PubMed ID: 22706285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis.
    Brambilla V; Battaglia R; Colombo M; Masiero S; Bencivenga S; Kater MM; Colombo L
    Plant Cell; 2007 Aug; 19(8):2544-56. PubMed ID: 17693535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants.
    De Bodt S; Raes J; Florquin K; Rombauts S; Rouzé P; Theissen G; Van de Peer Y
    J Mol Evol; 2003 May; 56(5):573-86. PubMed ID: 12698294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid.
    Tsai WC; Pan ZJ; Hsiao YY; Jeng MF; Wu TF; Chen WH; Chen HH
    Plant Cell Physiol; 2008 May; 49(5):814-24. PubMed ID: 18390881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants.
    Kaufmann K; Melzer R; Theissen G
    Gene; 2005 Mar; 347(2):183-98. PubMed ID: 15777618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis.
    de Folter S; Shchennikova AV; Franken J; Busscher M; Baskar R; Grossniklaus U; Angenent GC; Immink RG
    Plant J; 2006 Sep; 47(6):934-46. PubMed ID: 16925602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules.
    Osnato M; Lacchini E; Pilatone A; Dreni L; Grioni A; Chiara M; Horner D; Pelaz S; Kater MM
    J Exp Bot; 2021 Feb; 72(2):398-414. PubMed ID: 33035313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development.
    Yao SG; Ohmori S; Kimizu M; Yoshida H
    Plant Cell Physiol; 2008 May; 49(5):853-7. PubMed ID: 18378529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis.
    Moreno-Risueno MA; González N; Díaz I; Parcy F; Carbonero P; Vicente-Carbajosa J
    Plant J; 2008 Mar; 53(6):882-94. PubMed ID: 18047557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice.
    Mitsuda N; Hiratsu K; Todaka D; Nakashima K; Yamaguchi-Shinozaki K; Ohme-Takagi M
    Plant Biotechnol J; 2006 May; 4(3):325-32. PubMed ID: 17147638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes.
    Alvarez-Buylla ER; García-Ponce B; Garay-Arroyo A
    J Exp Bot; 2006; 57(12):3099-107. PubMed ID: 16893974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [MADS-box proteins--combinatorial transcriptional regulators in fungi, animals and plants].
    Szafron Ł; Jagielski T; Dzikowska A
    Postepy Biochem; 2009; 55(1):54-65. PubMed ID: 19514466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.