BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 12395417)

  • 1. Effect of millimeter waves on cyclophosphamide induced suppression of the immune system.
    Logani MK; Anga A; Szabo I; Agelan A; Irizarry AR; Ziskin MC
    Bioelectromagnetics; 2002 Dec; 23(8):614-21. PubMed ID: 12395417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of millimeter waves on natural killer cell activation.
    Makar VR; Logani MK; Bhanushali A; Kataoka M; Ziskin MC
    Bioelectromagnetics; 2005 Jan; 26(1):10-9. PubMed ID: 15605409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of millimeter waves on cyclophosphamide induced suppression of T cell functions.
    Makar V; Logani M; Szabo I; Ziskin M
    Bioelectromagnetics; 2003 Jul; 24(5):356-65. PubMed ID: 12820293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma.
    Logani MK; Bhanushali A; Anga A; Majmundar A; Szabo I; Ziskin MC
    Bioelectromagnetics; 2004 Oct; 25(7):516-23. PubMed ID: 15376243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of delayed-type hypersensitivity to oxazolone in whole-body-irradiated mice and protection by WR-2721.
    Srinivasan V; Weiss JF
    Radiat Res; 1984 Jun; 98(3):438-44. PubMed ID: 6328568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell, and macrophage functions.
    Makar VR; Logani MK; Bhanushali A; Alekseev SI; Ziskin MC
    Bioelectromagnetics; 2006 Sep; 27(6):458-66. PubMed ID: 16622862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of depressed immunity in chronic renal failure: effect of cyclophosphamide pretreatment on delayed-type hypersensitivity skin reaction.
    Gagnon RF; Lu DS
    J Clin Lab Immunol; 1985 Nov; 18(3):135-40. PubMed ID: 2935635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of contact hypersensitivity and tolerance in vivo and in vitro. I. Basic characteristics of the reactions and confirmation of an immune response in tolerant mice.
    Noonan FP; Halliday WJ
    Int Arch Allergy Appl Immunol; 1978; 56(6):523-32. PubMed ID: 631921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of fractional cyclophosphamide dosage on sheep red blood cell-delayed-type hypersensitivity response in mice.
    Rondinone SN; Giovanniello OA; Barrios HA; Nota NR
    J Immunol; 1983 Apr; 130(4):1600-3. PubMed ID: 6220061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic immunosuppression of cell-mediated immune reactions by a monofunctional psoralen plus ultraviolet A radiation.
    Ullrich SE
    Photodermatol Photoimmunol Photomed; 1991 Jun; 8(3):116-22. PubMed ID: 1839504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressor T cells induced by UV-B irradiation suppress DTH to alloantigens.
    Molendijk A; van Gurp RJ; Benner R
    Transplant Proc; 1987 Oct; 19(5):4258-60. PubMed ID: 2960053
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of suppressor cells in the induction of murine photoallergic contact dermatitis and in its suppression by prior UVB irradiation.
    Granstein RD; Morison WL; Kripke ML
    J Immunol; 1983 May; 130(5):2099-103. PubMed ID: 6187838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Suppressor system of cell-mediated hypersensitivity in the mouse:sheep-erythrocyte model].
    Rondinone SN; Giovanniello OA; Barrios HA; Nota NR
    Rev Latinoam Microbiol; 1986; 28(3):211-5. PubMed ID: 2954197
    [No Abstract]   [Full Text] [Related]  

  • 14. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo.
    Delgado M; Chorny A; Gonzalez-Rey E; Ganea D
    J Leukoc Biol; 2005 Dec; 78(6):1327-38. PubMed ID: 16204628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Building up of an animal model of conditioned immunosuppression and analysis of its possible mechanism].
    Li LQ; Wang JX; Song DM; Fan SG; Mei L
    Yao Xue Xue Bao; 1996; 31(6):477-80. PubMed ID: 9275727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressor cells in different types of unresponsiveness to dinitrochlorobenzene (DNCB) contact sensitivity in guinea pigs.
    Polk L
    Int Arch Allergy Appl Immunol; 1975; 49(1-2):281-4. PubMed ID: 1140858
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of murine tumors upon delayed hypersensitivity to dinitrochlorobenzene. III. In vivo activity of the nonspecific suppressor cell.
    Jessup JM; Macek CM; Kahan BD; Pellis NR
    J Immunol; 1981 Nov; 127(5):2183-7. PubMed ID: 6457866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves.
    Vijayalaxmi ; Logani MK; Bhanushali A; Ziskin MC; Prihoda TJ
    Radiat Res; 2004 Mar; 161(3):341-5. PubMed ID: 14982479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of biocarbazine on the indices of humoral and cellular immunity in mice].
    Ancheva MN; Boeva MN
    Eksp Onkol; 1990; 12(5):37-40. PubMed ID: 2226256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of AC II, a herbal formulation on radiation-induced immunosuppression in mice.
    Tharakan ST; Kuttan G; Kuttan R
    Indian J Exp Biol; 2006 Sep; 44(9):719-25. PubMed ID: 16999026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.