BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12395783)

  • 21. Modelling 137Cs uptake in plants from undisturbed soil monoliths.
    Waegeneers N; Smolders E; Merckx R
    J Environ Radioact; 2005; 81(2-3):187-99. PubMed ID: 15795034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soil to plant uptake of fallout 137Cs by plants from boreal areas polluted by industrial emissions from smelters.
    Bunzl K; Albers BP; Shimmack W; Rissanen K; Suomela M; Puhakainen M; Rahola T; Steinnes E
    Sci Total Environ; 1999 Aug; 234(1-3):213-21. PubMed ID: 10507160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Spatial variability of quasidiffusion coefficients for 137Cs in grey forest soils in the distant zone of contamination from the Chernobyl NPP].
    Lipatov DN; Shcheglov AI
    Radiats Biol Radioecol; 2014; 54(5):537-46. PubMed ID: 25775846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the transfer of 137Cs to rice plants by a dynamic compartment model with a consideration of the soil properties.
    Keum DK; Lee H; Kang HS; Jun I; Choi YH; Lee CW
    J Environ Radioact; 2007; 92(1):1-15. PubMed ID: 17081663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [An estimation of the half-life periods of 137Cs content in the root-inhabited soil layer of meadow ecosystems].
    Fesenko SV; Spiridonov SI; Sanzharova NI; Aleksakhin RM
    Radiats Biol Radioecol; 1997; 37(2):267-80. PubMed ID: 9181971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Imitation model of 90Sr behaviour in the soil and stand of pine forest].
    Mamikhin SV; Nikulina MV
    Radiats Biol Radioecol; 2005; 45(2):218-26. PubMed ID: 15906866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of industrial pollution on the distribution of 137Cs in soil and the soil-to-plant transfer in a pine forest in SW Finland.
    Outola I; Pehrman R; Jaakkola T
    Sci Total Environ; 2003 Mar; 303(3):221-30. PubMed ID: 12606162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of radiocaesium in an Austrian forest stand.
    Strebl F; Gerzabek MH; Bossew P; Kienzl K
    Sci Total Environ; 1999 Feb; 226(1):75-83. PubMed ID: 10077876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the fungal mycelium in the retention of radiocaesium in forest soils.
    Vinichuk MM; Johanson KJ; Rosén K; Nilsson I
    J Environ Radioact; 2005; 78(1):77-92. PubMed ID: 15465181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [137Cs vertical migration in boggy soils in the long term after the Chernobyl accident].
    Podvorko GA; Sanzharova NI; Spiridonov SI; Konopleva IV
    Radiats Biol Radioecol; 2004; 44(4):458-65. PubMed ID: 15455677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 137Cs and 40K soil-to-plant relationship in a seminatural grassland of the Giulia Alps, Italy.
    Ciuffo LE; Belli M; Pasquale A; Menegon S; Velasco HR
    Sci Total Environ; 2002 Aug; 295(1-3):69-80. PubMed ID: 12186293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of sulfate-reducing bacteria on adsorption of 137Cs by soils from arid and tropical regions.
    Russell RA; Holden PJ; Payne TE; McOrist GD
    J Environ Radioact; 2004; 74(1-3):151-8. PubMed ID: 15063544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer parameter values in temperate forest ecosystems: a review.
    Calmon P; Thiry Y; Zibold G; Rantavaara A; Fesenko S
    J Environ Radioact; 2009 Sep; 100(9):757-66. PubMed ID: 19100665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Modeling the behavior of 137Cs in a soil-plant system after use of ameliorators].
    Spiridonov SI; Fesenko SV; Sanzharova NI
    Radiats Biol Radioecol; 2001; 41(3):337-44. PubMed ID: 11458650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems.
    Steine M; Linkov I; Yoshida S
    J Environ Radioact; 2002; 58(2-3):217-41. PubMed ID: 11814167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Consequences of radioactive pollution of forests in the zone affected by the accident at the Chernobyl power plant].
    Tikhomirov FA; Shcheglov AI
    Radiats Biol Radioecol; 1997; 37(4):664-72. PubMed ID: 9599627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents.
    Schell WR; Linkov I; Myttenaere C; Morel B
    Health Phys; 1996 Mar; 70(3):318-35. PubMed ID: 8609024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The presence of some artificial and natural radionuclides in a Eucalyptus forest in the south of Spain.
    Vaca F; Manjón G; Garcia-León M
    J Environ Radioact; 2001; 56(3):309-25. PubMed ID: 11468822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The assessment of the content of 137Cs of the global and Chernobyl origin in forest soils and some types of edible fungi].
    Perevolotskaia TV; Perevolotskiĭ AN
    Radiats Biol Radioecol; 2014; 54(2):201-8. PubMed ID: 25764823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of 137Cesium and 90Strontium from abiotic and biotic sources in rodents at Chornobyl, Ukraine.
    Chesser RK; Rodgers BE; Wickliffe JK; Gaschak S; Chizhevsky I; Phillips CJ; Baker RJ
    Environ Toxicol Chem; 2001 Sep; 20(9):1927-35. PubMed ID: 11521818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.