BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12395783)

  • 41. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions.
    Koarashi J; Atarashi-Andoh M; Matsunaga T; Sato T; Nagao S; Nagai H
    Sci Total Environ; 2012 Aug; 431():392-401. PubMed ID: 22706146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution of cesium-137 in Japanese forest soils: correlation with the contents of organic carbon.
    Takenaka C; Onda Y; Hamajima Y
    Sci Total Environ; 1998 Oct; 222(3):193-9. PubMed ID: 9851070
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vertical transport of radiocesium in surface soils: model implementation and dose-rate computation.
    Velasco RH; Belli M; Sansone U; Menegon S
    Health Phys; 1993 Jan; 64(1):37-44. PubMed ID: 8416213
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Dynamics of biological availability of (137)Cs in the soil-plant system after the accident at Chernobyl].
    Sanzharova NI; Fesenko SV; Aleksakhin RM
    Dokl Akad Nauk; 1994 Oct; 338(4):564-6. PubMed ID: 7820087
    [No Abstract]   [Full Text] [Related]  

  • 45. [The dynamics of 137Cs content in ontogenesis in barley grown on soil with background and increased contents of heavy metals].
    Ul'ianenko LN; Filipas AS; Loĭ NN; Kruglov SV; Stepanchikova NS
    Radiats Biol Radioecol; 2009; 49(2):186-91. PubMed ID: 19507687
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Migration of 137Cs in the soil of sloping semi-natural ecosystems in Northern Greece.
    Arapis GD; Karandinos MG
    J Environ Radioact; 2004; 77(2):133-42. PubMed ID: 15312699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Upward mobilization of 137Cs in surface soils of Chamaecyparis obtusa Sieb. et Zucc. (hinoki) plantation in Japan.
    Fukuyama T; Takenaka C
    Sci Total Environ; 2004 Jan; 318(1-3):187-95. PubMed ID: 14654284
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of clay mineralogy on the mobility of radiocaesium in upland soils of NW Italy.
    Facchinelli A; Gallini L; Barberis E; Magnoni M; Hursthouse AS
    J Environ Radioact; 2001; 56(3):299-307. PubMed ID: 11468821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [137Cs distribution and accumulation in the tissues of cultivated fungi (Pleurotus ostreatus)].
    Tsvetnova OB; Shcheglov AI; Polianskaia LM
    Radiats Biol Radioecol; 2005; 45(2):248-53. PubMed ID: 15906870
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.
    Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H
    J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Research into the factors affecting the uptake of 90Sr and 137Cs by plants from radioactively contaminated soils of the southern Urals.
    Kazachonok NN; Kostyuchenko VA; Popova IY; Polyanchikova GV
    Health Phys; 2012 Jul; 103(1):56-7. PubMed ID: 22647915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Method of quantified complete estimation of soil properties for prediction of radionuclide accumulation by plants].
    Prister BS; Biesold H; Deville-Cavelin G
    Radiats Biol Radioecol; 2003; 43(6):688-96. PubMed ID: 14963937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of season and leaf age on concentrations of radiocaesium (137Cs), stable caesium (133Cs) and potassium in Agrostis capillaris.
    Salt CA; Kay JW; Jarvis KE
    Environ Pollut; 2004 Aug; 130(3):359-69. PubMed ID: 15182969
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fundamental principles of the behavior of 137Cs in the soil and its migration into agricultural crops.
    Tikhomirov FA; Moiseev IT; Alekaskhin RM
    Biol Bull Acad Sci USSR; 1981; 8(1):59-64. PubMed ID: 7284477
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of 137Cs in cultivated soils from two loess areas in Poland.
    Poreba G; Bluszcz A
    Isotopes Environ Health Stud; 2006 Jun; 42(2):181-8. PubMed ID: 16707318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [The comparative analysis of 137Cs, 40K, K, 90Sr and Ca allocation in builders of an ground part of wood plants in a quasi-equilibrium condition].
    Mamikhin SV; Manakhov DV; Shcheglov AI
    Radiats Biol Radioecol; 2008; 48(6):654-9. PubMed ID: 19178040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Availability and immobilization of 137Cs in subtropical high mountain forest and grassland soils.
    Chiu CY; Wang CJ; Huang CC
    J Environ Radioact; 2008 Jun; 99(6):882-9. PubMed ID: 18164109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Simulation of 137Cs accumulation in plants and fungi from soil with irregular vertical characteristics and distribution of radionuclide].
    Bulgakov AA; Konoplev AA; Avila R
    Radiats Biol Radioecol; 2001; 41(2):226-31. PubMed ID: 11402558
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uptake and release of cesium-137 by five plant species as influenced by soil amendments in field experiments.
    Fuhrmann M; Lasat M; Ebbs S; Cornish J; Kochian L
    J Environ Qual; 2003; 32(6):2272-9. PubMed ID: 14674551
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [137Cs accumulation by grasses from peat soil under increasing amounts of potassium and nitrogen fertilizers].
    Drichko VF; Ponikarova TM; Efremova MA
    Radiats Biol Radioecol; 1996; 36(4):524-30. PubMed ID: 8925026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.