These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12395838)

  • 1. Recovery from acidification in central Europe--observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic.
    Hruska J; Moldan F; Krám P
    Environ Pollut; 2002; 120(2):261-74. PubMed ID: 12395838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terrestrial ecosystem recovery--modelling the effects of reduced acidic inputs and increased inputs of sea-salts induced by global change.
    Beier C; Moldan F; Wright RF
    Ambio; 2003 Jun; 32(4):275-82. PubMed ID: 12956593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afforestation, seasalt episodes and acidification--a paired catchment study in western Norway.
    Larssen T; Holme J
    Environ Pollut; 2006 Feb; 139(3):440-50. PubMed ID: 16129529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic.
    Oulehle F; Hofmeister J; Cudlín P; Hruska J
    Sci Total Environ; 2006 Nov; 370(2-3):532-44. PubMed ID: 16935320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery from acidification in the Tillingbourne catchment, southern England: catchment description and preliminary results.
    Hill TJ; Skeffington RA; Whitehead PG
    Sci Total Environ; 2002 Jan; 282-283():81-97. PubMed ID: 11846088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the "SAFE" model.
    Małek S; Martinson L; Sverdrup H
    Environ Pollut; 2005 Oct; 137(3):568-73. PubMed ID: 16005767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous response of central European streams to decreased acidic atmospheric deposition.
    Veseý J; Majer V; Norton SA
    Environ Pollut; 2002; 120(2):275-81. PubMed ID: 12395839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased dissolved organic carbon (DOC) in Central European streams is driven by reductions in ionic strength rather than climate change or decreasing acidity.
    Hruska J; Krám P; McDowell WH; Oulehle F
    Environ Sci Technol; 2009 Jun; 43(12):4320-6. PubMed ID: 19603641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating the long-term chemistry of an upland UK catchment: major solutes and acidification.
    Tipping E; Lawlor AJ; Lofts S
    Environ Pollut; 2006 May; 141(1):151-66. PubMed ID: 16236408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction.
    Belyazid S; Westling O; Sverdrup H
    Environ Pollut; 2006 Nov; 144(2):596-609. PubMed ID: 16515827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term changes in aluminum fractions of drainage waters in two forest catchments with contrasting lithology.
    Krám P; Hruska J; Driscoll CT; Johnson CE; Oulehle F
    J Inorg Biochem; 2009 Nov; 103(11):1465-72. PubMed ID: 19748678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model prognoses for future acidification recovery of surface waters in norway using long-term monitoring data.
    Larssen T
    Environ Sci Technol; 2005 Oct; 39(20):7970-9. PubMed ID: 16295863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrospective analyses and future predictions of snowmelt-induced acidification: example from a heavily impacted stream in the Czech Republic.
    Laudon H; Hruska J; Köhler S; Krám P
    Environ Sci Technol; 2005 May; 39(9):3197-202. PubMed ID: 15926570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the role of forest soil and bedrock in the acid neutralization of surface water in steep hillslopes.
    Asano Y; Uchida T
    Environ Pollut; 2005 Feb; 133(3):467-80. PubMed ID: 15519722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of future stream alkalinity under changing deposition and climate scenarios.
    Welsch DL; Cosby BJ; Hornberger GM
    Sci Total Environ; 2006 Aug; 367(2-3):800-10. PubMed ID: 16600331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium losses from a forested catchment in south-central Ontario, Canada.
    Watmough SA; Dillon PJ
    Environ Sci Technol; 2003 Jul; 37(14):3085-9. PubMed ID: 12901654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional assessment of the response of the acid-base status of lake watersheds in the Adirondack region of New York to changes in atmospheric deposition using PnET-BGC.
    Chen L; Driscoll CT
    Environ Sci Technol; 2005 Feb; 39(3):787-94. PubMed ID: 15757340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air-pollution emission control in China: impacts on soil acidification recovery and constraints due to drought.
    Duan L; Liu J; Xin Y; Larssen T
    Sci Total Environ; 2013 Oct; 463-464():1031-41. PubMed ID: 23891996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling long-term stream acidification in the chemically heterogeneous Upper Severn catchment, Mid-Wales.
    Hill T; Whitehead P; Neal C
    Sci Total Environ; 2002 Mar; 286(1-3):215-32. PubMed ID: 11886094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987-2008.
    Löfgren S; Zetterberg T
    Sci Total Environ; 2011 Apr; 409(10):1916-26. PubMed ID: 21377191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.