BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12396128)

  • 1. Solid-state fermentation for production of phytase by Rhizopus oligosporus.
    Sabu A; Sarita S; Pandey A; Bogar B; Szakacs G; Soccol CR
    Appl Biochem Biotechnol; 2002; 102-103(1-6):251-60. PubMed ID: 12396128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of phytase by Mucor racemosus in solid-state fermentation.
    Bogar B; Szakacs G; Pandey A; Abdulhameed S; Linden JC; Tengerdy RP
    Biotechnol Prog; 2003; 19(2):312-9. PubMed ID: 12675565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of phytase under solid-state fermentation using Rhizopus oryzae: novel strain improvement approach and studies on purification and characterization.
    Rani R; Ghosh S
    Bioresour Technol; 2011 Nov; 102(22):10641-9. PubMed ID: 21945206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical optimization and mutagenesis for high level of phytase production by Rhizopus oligosporus MTCC 556 under solid state fermentation.
    Suresh S; Radha KV
    J Environ Biol; 2016 Mar; 37(2):253-9. PubMed ID: 27097445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial production of extra-cellular phytase using polystyrene as inert solid support.
    Gautam P; Sabu A; Pandey A; Szakacs G; Soccol CR
    Bioresour Technol; 2002 Jul; 83(3):229-33. PubMed ID: 12094799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake.
    Singh B; Satyanarayana T
    Appl Biochem Biotechnol; 2006 Jun; 133(3):239-50. PubMed ID: 16720904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus.
    Roopesh K; Ramachandran S; Nampoothiri KM; Szakacs G; Pandey A
    Bioresour Technol; 2006 Feb; 97(3):506-11. PubMed ID: 15979307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of extra- and intracellular phytases from Rhizopus oligosporus used in tempeh production.
    Sutardi ; Buckle KA
    Int J Food Microbiol; 1988 Feb; 6(1):67-79. PubMed ID: 2856346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications.
    Buddhiwant P; Bhavsar K; Kumar VR; Khire JM
    Prep Biochem Biotechnol; 2016 Aug; 46(6):531-8. PubMed ID: 26176365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Phytase Production by Bacillus subtilis subsp. subtilis in Solid State Fermentation and its Utility in Improving Food Nutrition.
    Singh B; Kumar G; Kumar V; Singh D
    Protein Pept Lett; 2021; 28(10):1083-1089. PubMed ID: 34303326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Thermotolerant Phytase Produced by Rhizopus microsporus var. microsporus Biofilm on an Inert Support Using Sugarcane Bagasse as Carbon Source.
    Sato VS; Jorge JA; Guimarães LH
    Appl Biochem Biotechnol; 2016 Jun; 179(4):610-24. PubMed ID: 26906117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of phytase production by solid substrate fermentation.
    Bogar B; Szakacs G; Linden JC; Pandey A; Tengerdy RP
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):183-9. PubMed ID: 12715256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected].
    Sapna ; Singh B
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of phosphate concentration on phytase production and the reduction of phytic acid content in canola meal by Aspergillus carbonarius during a solid-state fermentation process.
    al-Asheh S; Duvnjak Z
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):25-30. PubMed ID: 7766133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.
    Chen L; Vadlani PV; Madl RL
    J Sci Food Agric; 2014 Jan; 94(1):113-8. PubMed ID: 23633040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes.
    Balakrishnan M; Jeevarathinam G; Kumar SKS; Muniraj I; Uthandi S
    BMC Biotechnol; 2021 May; 21(1):33. PubMed ID: 33947396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Screening of phytase-producing strain and its optimal solid state phytase-producing conditions].
    Wang S; Hu K; Lin W
    Ying Yong Sheng Tai Xue Bao; 2005 Nov; 16(11):2154-7. PubMed ID: 16471358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of feed enzymes (phytase and plant cell wall hydrolyzing enzymes) by Mucor indicus MTCC 6333: purification and characterization of phytase.
    Gulati HK; Chadha BS; Saini HS
    Folia Microbiol (Praha); 2007; 52(5):491-7. PubMed ID: 18298046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications.
    Singh B; Satyanarayana T
    Bioresour Technol; 2008 May; 99(8):2824-30. PubMed ID: 17681787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases.
    Jain J; Singh B
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1485-1495. PubMed ID: 27796873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.