These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12396128)

  • 41. Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation.
    Shivanna GB; Venkateswaran G
    ScientificWorldJournal; 2014; 2014():392615. PubMed ID: 24688383
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source.
    Charoenrat T; Antimanon S; Kocharin K; Tanapongpipat S; Roongsawang N
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1618-1634. PubMed ID: 27444181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytase production by Rhizopus microsporus var. microsporus biofilm: characterization of enzymatic activity after spray drying in presence of carbohydrates and nonconventional adjuvants.
    Sato VS; Jorge JA; Oliveira WP; Souza CR; Guimarães LH
    J Microbiol Biotechnol; 2014 Feb; 24(2):177-87. PubMed ID: 24196167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii.
    Madeira JV; Macedo JA; Macedo GA
    Bioresour Technol; 2011 Aug; 102(15):7343-8. PubMed ID: 21612916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation.
    Nampoothiri KM; Tomes GJ; Roopesh K; Szakacs G; Nagy V; Soccol CR; Pandey A
    Appl Biochem Biotechnol; 2004; 118(1-3):205-14. PubMed ID: 15304750
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98.
    Veerabhadrappa MB; Shivakumar SB; Devappa S
    J Biosci Bioeng; 2014 Feb; 117(2):208-214. PubMed ID: 23958640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace.
    Madeira JV; Macedo JA; Macedo GA
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):477-82. PubMed ID: 21909682
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosynthesis, purification and some properties of extracellular phytase from Aspergillus carneus.
    Ghareib M
    Acta Microbiol Hung; 1990; 37(2):159-64. PubMed ID: 2176769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Beneficial effect of protracted sterilization of lentils on phytase production by Aspergillus ficuum in solid state fermentation.
    Bennett P; Yang ST
    Biotechnol Prog; 2012; 28(5):1263-70. PubMed ID: 22848026
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle.
    Lan GQ; Abdullah N; Jalaludin S; Ho YW
    J Appl Microbiol; 2002; 93(4):668-74. PubMed ID: 12234350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermo-acid-stable phytase-mediated enhancement of bioethanol production using Colocasia esculenta.
    Makolomakwa M; Puri AK; Permaul K; Singh S
    Bioresour Technol; 2017 Jul; 235():396-404. PubMed ID: 28384593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation.
    Phengnuam T; Suntornsuk W
    J Biosci Bioeng; 2013 Feb; 115(2):168-72. PubMed ID: 23014183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combinatorial approach of statistical optimization and mutagenesis for improved production of acidic phytase by Aspergillus niger NCIM 563 under submerged fermentation condition.
    Bhavsar K; Gujar P; Shah P; Kumar VR; Khire JM
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):673-9. PubMed ID: 22382169
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved production of protease-resistant phytase by Aspergillus oryzae and its applicability in the hydrolysis of insoluble phytates.
    Sapna ; Singh B
    J Ind Microbiol Biotechnol; 2013 Aug; 40(8):891-9. PubMed ID: 23652971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7.
    Gulati HK; Chadha BS; Saini HS
    Acta Microbiol Immunol Hung; 2007 Jun; 54(2):121-38. PubMed ID: 17899792
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mixed Substrate Fermentation for Enhanced Phytase Production by Thermophilic Mould Sporotrichum thermophile and Its Application in Beneficiation of Poultry Feed.
    Kumari A; Satyanarayana T; Singh B
    Appl Biochem Biotechnol; 2016 Jan; 178(1):197-210. PubMed ID: 26433602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solid-State Fermentation Reduces Phytic Acid Level, Improves the Profile of
    Duliński R; Stodolak B; Byczyński Ł; Poreda A; Starzyńska-Janiszewska A; Żyła K
    Food Technol Biotechnol; 2017 Sep; 55(3):413-419. PubMed ID: 29089855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lichtheimia blakesleeana as a new potencial producer of phytase and xylanase.
    Neves ML; da Silva MF; Souza-Motta CM; Spier MR; Soccol CR; Porto TS; Moreira KA; Porto AL
    Molecules; 2011 Jun; 16(6):4807-17. PubMed ID: 21659966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions.
    Shah P; Bhavsar K; Soni SK; Khire JM
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):373-80. PubMed ID: 19082644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal.
    Vig AP; Walia A
    Bioresour Technol; 2001 Jul; 78(3):309-12. PubMed ID: 11341693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.