These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 12396136)

  • 1. Modified enzymes for reactions in organic solvents.
    Salleh AB; Basri M; Taib M; Jasmani H; Rahman RN; Rahman MB; Razak CN
    Appl Biochem Biotechnol; 2002; 102-103(1-6):349-57. PubMed ID: 12396136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lipid-coated lipase as an efficient hydrolytic catalyst in the two-phase aqueous-organic system.
    Mori T; Kishimoto S; Ijiro K; Kobayashi A; Okahata Y
    Biotechnol Bioeng; 2001 Sep; 76(2):157-63. PubMed ID: 11505385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic solvent tolerant lipases and applications.
    Sharma S; Kanwar SS
    ScientificWorldJournal; 2014; 2014():625258. PubMed ID: 24672342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the rationale behind organic solvent stability of lipases.
    Chakravorty D; Parameswaran S; Dubey VK; Patra S
    Appl Biochem Biotechnol; 2012 Jun; 167(3):439-61. PubMed ID: 22562495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous biocatalysis in organic solvents and water-organic mixtures.
    Castro GR; Knubovets T
    Crit Rev Biotechnol; 2003; 23(3):195-231. PubMed ID: 14743990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation and catalytic properties studies of Candida rugosa Lip7 via enantioselective esterification of ibuprofen in organic solvents and ionic liquids.
    Li X; Huang S; Xu L; Yan Y
    ScientificWorldJournal; 2013; 2013():364730. PubMed ID: 24381516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.
    Park HJ; Joo JC; Park K; Kim YH; Yoo YJ
    J Biotechnol; 2013 Feb; 163(3):346-52. PubMed ID: 23178554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of lipase from Candida cylindracea with dextran using the borane-pyridine complex to improve organic solvent stability.
    Kajiwara S; Komatsu K; Yamada R; Matsumoto T; Yasuda M; Ogino H
    J Biotechnol; 2019 Apr; 296():1-6. PubMed ID: 30853640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications.
    Zhao B; Liu X; Jiang Y; Zhou L; He Y; Gao J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1802-14. PubMed ID: 24879595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An organic soluble lipase for water-free synthesis of biodiesel.
    Zhao X; El-Zahab B; Brosnahan R; Perry J; Wang P
    Appl Biochem Biotechnol; 2007 Dec; 143(3):236-43. PubMed ID: 18057451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces.
    de Oliveira IP; Jara GE; Martínez L
    Phys Chem Chem Phys; 2017 Nov; 19(46):31499-31507. PubMed ID: 29160871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the catalytic characteristics of lipase-displaying yeast cells by hydrophobic modification.
    Zhang K; Jin Z; Wang P; Zheng SP; Han SY; Lin Y
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1689-1699. PubMed ID: 28836017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents.
    Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M
    Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The utility of cyclodextrins in lipase-catalyzed transesterification in organic solvents: enhanced reaction rate and enantioselectivity.
    Ghanem A
    Org Biomol Chem; 2003 Apr; 1(8):1282-91. PubMed ID: 12929657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring Particle-Enzyme Nanoconjugates for Biocatalysis at the Organic-Organic Interface.
    Sun Z; Cai M; Hübner R; Ansorge-Schumacher MB; Wu C
    ChemSusChem; 2020 Dec; 13(24):6523-6527. PubMed ID: 33078882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation.
    Mohtashami M; Fooladi J; Haddad-Mashadrizeh A; Housaindokht MR; Monhemi H
    Int J Biol Macromol; 2019 Feb; 122():914-923. PubMed ID: 30445665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical treatments for modification and immobilization to improve the solvent-stability of lipase.
    Matsumoto T; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Nov; 35(12):193. PubMed ID: 31773289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification.
    Herbst D; Peper S; Niemeyer B
    J Biotechnol; 2012 Dec; 162(4):398-403. PubMed ID: 22465292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipase-catalyzed cellulose acetylation in aqueous and organic media.
    Yang K; Wang YJ
    Biotechnol Prog; 2003; 19(6):1664-71. PubMed ID: 14656139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.