These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12396179)

  • 1. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function.
    Morel A; Antoine D; Gentili B
    Appl Opt; 2002 Oct; 41(30):6289-306. PubMed ID: 12396179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem.
    Morel A; Gentili B
    Appl Opt; 1996 Aug; 35(24):4850-62. PubMed ID: 21102911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse reflectance of oceanic waters. II Bidirectional aspects.
    Morel A; Gentili B
    Appl Opt; 1993 Nov; 32(33):6864-79. PubMed ID: 20856540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New theoretical formulation for the determination of radiance transmittance at the water-air interface.
    Dev PJ; Shanmugam P
    Opt Express; 2017 Oct; 25(22):27086-27103. PubMed ID: 29092190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters.
    Chowdhary J; Cairns B; Travis LD
    Appl Opt; 2006 Aug; 45(22):5542-67. PubMed ID: 16855652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a reflectance model used in the SeaWiFS ocean color algorithm: implications for chlorophyll concentration retrievals.
    Yan B; Stamnes K; Toratani M; Li W; Stamnes JJ
    Appl Opt; 2002 Oct; 41(30):6243-59. PubMed ID: 12396176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network method to correct bidirectional effects in water-leaving radiance.
    Fan Y; Li W; Voss KJ; Gatebe CK; Stamnes K
    Appl Opt; 2016 Jan; 55(1):10-21. PubMed ID: 26835615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric correction of satellite ocean color imagery: the black pixel assumption.
    Siegel DA; Wang M; Maritorena S; Robinson W
    Appl Opt; 2000 Jul; 39(21):3582-91. PubMed ID: 18349929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.
    Hlaing S; Gilerson A; Harmel T; Tonizzo A; Weidemann A; Arnone R; Ahmed S
    Appl Opt; 2012 Jan; 51(2):220-37. PubMed ID: 22270520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean.
    Stramska M; Stramski D
    Appl Opt; 2005 Mar; 44(9):1735-47. PubMed ID: 15813278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.
    Ma L; Wang F; Wang C; Wang C; Tan J
    Opt Express; 2015 Sep; 23(19):24274-89. PubMed ID: 26406633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of Raman scattering to water-leaving radiance: a reexamination.
    Gordon HR
    Appl Opt; 1999 May; 38(15):3166-74. PubMed ID: 18319905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of forward reflectance models and empirical algorithms for chlorophyll concentration of stratified waters.
    Lee Z; Wang Y; Yu X; Shang S; Luis K
    Appl Opt; 2020 Oct; 59(30):9340-9352. PubMed ID: 33104650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters.
    Park YJ; Ruddick K
    Appl Opt; 2005 Mar; 44(7):1236-49. PubMed ID: 15765704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-examining the effect of particle phase functions on the remote-sensing reflectance.
    Xiong Y; Zhang X; He S; Gray DJ
    Appl Opt; 2017 Aug; 56(24):6881-6888. PubMed ID: 29048028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scheme to estimate water-leaving albedo from remotely sensed chlorophyll-a concentration.
    Yu X; Lee Z
    Opt Express; 2022 Sep; 30(20):36176-36189. PubMed ID: 36258553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-leaving contribution to polarized radiation field over ocean.
    Zhai PW; Knobelspiesse K; Ibrahim A; Franz BA; Hu Y; Gao M; Frouin R
    Opt Express; 2017 Aug; 25(16):A689-A708. PubMed ID: 29041040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the distribution function of ocean nadir radiance and inherent optical properties for oceanic waters.
    Hirata T; Hardman-Mountford N; Aiken J; Fishwick J
    Appl Opt; 2009 Jun; 48(17):3129-38. PubMed ID: 19516346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.