These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12396201)

  • 1. Variability of the downwelling diffuse attenuation coefficient with consideration of inelastic scattering.
    Zheng X; Dickey T; Chang G
    Appl Opt; 2002 Oct; 41(30):6477-88. PubMed ID: 12396201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements.
    Simon A; Shanmugam P
    Opt Express; 2013 Dec; 21(24):30082-106. PubMed ID: 24514558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inelastic scattering on underwater daylight in the ocean: model evaluation, validation, and first results.
    Schroeder M; Barth H; Reuter R
    Appl Opt; 2003 Jul; 42(21):4244-60. PubMed ID: 12921272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths.
    Ge Y; Gordon HR; Voss KJ
    Appl Opt; 1993 Jul; 32(21):4028-36. PubMed ID: 20830044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irradiance inversion theory to retrieve volume scattering function of seawater.
    Hirata T
    Appl Opt; 2003 Mar; 42(9):1564-73. PubMed ID: 12665087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean.
    Gordon HR
    Appl Opt; 1987 Oct; 26(19):4133-48. PubMed ID: 20490199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative transfer in the ocean: computations relating to the asymptotic and near-asymptotic daylight field.
    Gordon HR; Ding K; Gong W
    Appl Opt; 1993 Mar; 32(9):1606-19. PubMed ID: 20820293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent optical properties of oceanic water: dependence on the molecular scattering contribution.
    Morel A; Loisel H
    Appl Opt; 1998 Jul; 37(21):4765-76. PubMed ID: 18285934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of hyperspectral inherent optical properties from in-water radiometry: error analysis and application to in situ data.
    Rehm E; Mobley CD
    Appl Opt; 2013 Feb; 52(4):795-817. PubMed ID: 23385922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of scattering phenomena on the solar zenith angle dependence of in-water irradiance levels.
    Jerome JH; Bruton JE; Bukata RP
    Appl Opt; 1982 Feb; 21(4):642-7. PubMed ID: 20372511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measured IOPs of Jerlov water types.
    Williamson CA; Hollins RC
    Appl Opt; 2022 Nov; 61(33):9951-9961. PubMed ID: 36606827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Radiometric Approaches to Compute Underwater Irradiances: Potential Applications for High-Resolution and Citizen Science-Based Water Quality Monitoring Programs.
    Rodero C; Olmedo E; Bardaji R; Piera J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytic model of ocean color.
    Sathyendranath S; Platt T
    Appl Opt; 1997 Apr; 36(12):2620-9. PubMed ID: 18253252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater light polarization and radiance fluctuations induced by surface waves.
    Sabbah S; Shashar N
    Appl Opt; 2006 Jul; 45(19):4726-39. PubMed ID: 16799688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lidar measurements of the diffuse attenuation coefficient in Yellowstone Lake.
    Roddewig MR; Churnside JH; Shaw JA
    Appl Opt; 2020 Apr; 59(10):3097-3101. PubMed ID: 32400591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of the diffuse attenuation coefficient and its impact on aquatic ecology environment].
    Huang CC; Li YM; Sun DY; Le CF; Wu L; Wang LZ; Wang X
    Huan Jing Ke Xue; 2009 Feb; 30(2):348-55. PubMed ID: 19402480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering.
    Loisel H; Stramski D
    Appl Opt; 2000 Jun; 39(18):3001-11. PubMed ID: 18345226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of diffuse attenuation coefficient of underwater irradiance in the lakes in the middle and lower reaches of Yangtze river ].
    Shi ZQ; Zhang YL; Wang MZ; Liu XH
    Huan Jing Ke Xue; 2013 Feb; 34(2):517-24. PubMed ID: 23668117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photic Volume in Photobioreactors Supporting Ultrahigh Population Densities of the Photoautotroph Spirulina platensis.
    Gitelson A; Qiuang H; Richmond A
    Appl Environ Microbiol; 1996 May; 62(5):1570-3. PubMed ID: 16535309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.