These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

685 related articles for article (PubMed ID: 12396421)

  • 1. The role of particle properties in pharmaceutical powder inhalation formulations.
    Chew NY; Chan HK
    J Aerosol Med; 2002; 15(3):325-30. PubMed ID: 12396421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dry powder aerosol delivery systems: current and future research directions.
    Chan HK
    J Aerosol Med; 2006; 19(1):21-7. PubMed ID: 16551211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of budesonide nanocluster dry powder aerosols: formulation and stability.
    El-Gendy N; Huang S; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3445-55. PubMed ID: 22619045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What is the role of particle morphology in pharmaceutical powder aerosols?
    Chan HK
    Expert Opin Drug Deliv; 2008 Aug; 5(8):909-14. PubMed ID: 18712999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.
    Li X; Vogt FG; Hayes D; Mansour HM
    Eur J Pharm Sci; 2014 Feb; 52():191-205. PubMed ID: 24215736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatics of pharmaceutical inhalation aerosols.
    Kwok PC; Chan HK
    J Pharm Pharmacol; 2009 Dec; 61(12):1587-99. PubMed ID: 19958580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.
    Park CW; Li X; Vogt FG; Hayes D; Zwischenberger JB; Park ES; Mansour HM
    Int J Pharm; 2013 Oct; 455(1-2):374-92. PubMed ID: 23820131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients.
    Minne A; Boireau H; Horta MJ; Vanbever R
    Eur J Pharm Biopharm; 2008 Nov; 70(3):839-44. PubMed ID: 18620052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers.
    Zeng XM; MacRitchie HB; Marriott C; Martin GP
    Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of budesonide nanocluster dry powder aerosols: processing.
    El-Gendy N; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3425-33. PubMed ID: 22539360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary dispersion formulations: the impact of dispersed powder properties on pressurized metered dose inhaler stability.
    O'Donnell KP; Williams RO
    Drug Dev Ind Pharm; 2013 Mar; 39(3):413-24. PubMed ID: 23216244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics.
    Begat P; Morton DA; Staniforth JN; Price R
    Pharm Res; 2004 Oct; 21(10):1826-33. PubMed ID: 15553229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-breath dry powder inhaler for delivery of cohesive powders in the treatment of bronchiectasis.
    Young PM; Salama RO; Zhu B; Phillips G; Crapper J; Chan HK; Traini D
    Drug Dev Ind Pharm; 2015 May; 41(5):859-65. PubMed ID: 24811055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of dry powder inhalers.
    Chougule MB; Padhi BK; Jinturkar KA; Misra A
    Recent Pat Drug Deliv Formul; 2007; 1(1):11-21. PubMed ID: 19075871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of budesonide nanocluster dry powder aerosols: preformulation.
    El-Gendy N; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3434-44. PubMed ID: 22623018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical stability of dry powder inhaler formulations.
    Shetty N; Cipolla D; Park H; Zhou QT
    Expert Opin Drug Deliv; 2020 Jan; 17(1):77-96. PubMed ID: 31815554
    [No Abstract]   [Full Text] [Related]  

  • 18. Powder Production and Particle Engineering for Dry Powder Inhaler Formulations.
    Lin YW; Wong J; Qu L; Chan HK; Zhou QT
    Curr Pharm Des; 2015; 21(27):3902-16. PubMed ID: 26290193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel alternative methods for the delivery of drugs for the treatment of asthma.
    Chan HK; Chew NY
    Adv Drug Deliv Rev; 2003 Jul; 55(7):793-805. PubMed ID: 12842601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of co-milling techniques for the production of high dose dry powder inhaler formulation.
    Lau M; Young PM; Traini D
    Drug Dev Ind Pharm; 2017 Aug; 43(8):1229-1238. PubMed ID: 28367654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.