These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 12397182)
1. The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Kobiler O; Koby S; Teff D; Court D; Oppenheim AB Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14964-9. PubMed ID: 12397182 [TBL] [Abstract][Full Text] [Related]
2. Role of C-terminal residues in oligomerization and stability of lambda CII: implications for lysis-lysogeny decision of the phage. Datta AB; Roy S; Parrack P J Mol Biol; 2005 Jan; 345(2):315-24. PubMed ID: 15571724 [TBL] [Abstract][Full Text] [Related]
3. HflD, an Escherichia coli protein involved in the lambda lysis-lysogeny switch, impairs transcription activation by lambdaCII. Parua PK; Mondal A; Parrack P Arch Biochem Biophys; 2010 Jan; 493(2):175-83. PubMed ID: 19853572 [TBL] [Abstract][Full Text] [Related]
4. Regulation of bacteriophage lambda development by guanosine 5'-diphosphate-3'-diphosphate. Slomińska M; Neubauer P; Wegrzyn G Virology; 1999 Sep; 262(2):431-41. PubMed ID: 10502521 [TBL] [Abstract][Full Text] [Related]
5. The Escherichia coli RNA polymerase alpha subunit and transcriptional activation by bacteriophage lambda CII protein. Gabig M; Obuchowski M; Ciesielska A; Latała B; Wegrzyn A; Thomas MS; Wegrzyn G Acta Biochim Pol; 1998; 45(1):271-80. PubMed ID: 9701520 [TBL] [Abstract][Full Text] [Related]
6. Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lambdaCII in vitro. Bandyopadhyay K; Parua PK; Datta AB; Parrack P Arch Biochem Biophys; 2010 Sep; 501(2):239-43. PubMed ID: 20599668 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli. Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850 [TBL] [Abstract][Full Text] [Related]
8. Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli. Shotland Y; Koby S; Teff D; Mansur N; Oren DA; Tatematsu K; Tomoyasu T; Kessel M; Bukau B; Ogura T; Oppenheim AB Mol Microbiol; 1997 Jun; 24(6):1303-10. PubMed ID: 9218777 [TBL] [Abstract][Full Text] [Related]
10. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). Kihara A; Akiyama Y; Ito K Proc Natl Acad Sci U S A; 1997 May; 94(11):5544-9. PubMed ID: 9159109 [TBL] [Abstract][Full Text] [Related]
11. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Herman C; Ogura T; Tomoyasu T; Hiraga S; Akiyama Y; Ito K; Thomas R; D'Ari R; Bouloc P Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10861-5. PubMed ID: 8248182 [TBL] [Abstract][Full Text] [Related]
12. Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision. Kobiler O; Rokney A; Oppenheim AB PLoS One; 2007 Apr; 2(4):e363. PubMed ID: 17426811 [TBL] [Abstract][Full Text] [Related]
13. Probing the antiprotease activity of lambdaCIII, an inhibitor of the Escherichia coli metalloprotease HflB (FtsH). Halder S; Datta AB; Parrack P J Bacteriol; 2007 Nov; 189(22):8130-8. PubMed ID: 17890311 [TBL] [Abstract][Full Text] [Related]
14. The Bacteriophage Lambda CII Phenotypes for Complementation, Cellular Toxicity and Replication Inhibition Are Suppressed in cII-oop Constructs Expressing the Small RNA OOP. Rajamanickam K; Hayes S Viruses; 2018 Mar; 10(3):. PubMed ID: 29518935 [TBL] [Abstract][Full Text] [Related]
15. Bacteriophage lambda cIII gene product has an additional function apart from inhibition of cII degradation. Latała B; Obuchowski M; W grzyn G Virus Genes; 2001 Mar; 22(2):127-32. PubMed ID: 11324748 [TBL] [Abstract][Full Text] [Related]
16. Role of the RNA polymerase alpha subunits in CII-dependent activation of the bacteriophage lambda pE promoter: identification of important residues and positioning of the alpha C-terminal domains. Kedzierska B; Lee DJ; Wegrzyn G; Busby SJ; Thomas MS Nucleic Acids Res; 2004; 32(2):834-41. PubMed ID: 14762211 [TBL] [Abstract][Full Text] [Related]
17. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda cII protein. Banuett F; Hoyt MA; McFarlane L; Echols H; Herskowitz I J Mol Biol; 1986 Jan; 187(2):213-24. PubMed ID: 2939254 [TBL] [Abstract][Full Text] [Related]
18. Purification and crystallization of CII: an unstable transcription activator from phage lambda. Datta AB; Chakrabarti P; Subramanya HS; Parrack P Biochem Biophys Res Commun; 2001 Nov; 288(4):997-1000. PubMed ID: 11689008 [TBL] [Abstract][Full Text] [Related]
19. A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB). Teff D; Koby S; Shotland Y; Ogura T; Oppenheim AB FEMS Microbiol Lett; 2000 Feb; 183(1):115-7. PubMed ID: 10650212 [TBL] [Abstract][Full Text] [Related]
20. Polyadenylation of oop RNA in the regulation of bacteriophage lambda development. Wróbel B; Herman-Antosiewicz A; Szalewska-Pałasz S; Wegrzyn G Gene; 1998 May; 212(1):57-65. PubMed ID: 9661664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]