These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12398429)

  • 1. Influence of velocity profile nonuniformity on minor losses for flow exiting thermoacoustic heat exchangers.
    Wakeland RS; Keolian RM
    J Acoust Soc Am; 2002 Oct; 112(4):1249-52. PubMed ID: 12398429
    [No Abstract]   [Full Text] [Related]  

  • 2. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
    de Jong JA; Wijnant YH; de Boer A
    J Acoust Soc Am; 2014 Mar; 135(3):1149-58. PubMed ID: 24606258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Working gases in thermoacoustic engines.
    Belcher JR; Slaton WV; Raspet R; Bass HE; Lightfoot J
    J Acoust Soc Am; 1999 May; 105(5):2677-84. PubMed ID: 10335618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigations of flow and energy fields near a thermoacoustic couple.
    Ishikawa H; Mee DJ
    J Acoust Soc Am; 2002 Feb; 111(2):831-9. PubMed ID: 11863185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of inert gas-condensing vapor thermoacoustics: transport equations.
    Slaton WV; Raspet R; Hickey CJ; Hiller RA
    J Acoust Soc Am; 2002 Oct; 112(4):1423-30. PubMed ID: 12398450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip.
    Mondal S; Haroun NA; Sibanda P
    PLoS One; 2015; 10(9):e0138355. PubMed ID: 26414006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonlinear model of thermoacoustic devices.
    Karpov S; Prosperetti A
    J Acoust Soc Am; 2002 Oct; 112(4):1431-44. PubMed ID: 12398451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous thermal cloak with constant conductivity and tunable heat localization.
    Han T; Yuan T; Li B; Qiu CW
    Sci Rep; 2013; 3():1593. PubMed ID: 23549139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes.
    Li Y; Shen X; Wu Z; Huang J; Chen Y; Ni Y; Huang J
    Phys Rev Lett; 2015 Nov; 115(19):195503. PubMed ID: 26588397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal modeling and performance analysis of a thermoacoustic refrigerator.
    Holmberg DG; Chen GS; Lin HT; Wo AM
    J Acoust Soc Am; 2003 Aug; 114(2):782-91. PubMed ID: 12942961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal thermal analysis of acousto-optic deflectors using finite element analysis model.
    Jiang R; Zhou Z; Lv X; Zeng S; Huang Z; Zhou H
    Ultrasonics; 2012 Jul; 52(5):643-9. PubMed ID: 22316528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of a high-powered carbon nanotube thin-film loudspeaker.
    Barnard AR; Jenkins DM; Brungart TA; McDevitt TM; Kline BL
    J Acoust Soc Am; 2013 Sep; 134(3):EL276-81. PubMed ID: 23968060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application.
    Dabbagh A; Abdullah BJ; Abu Kasim NH; Ramasindarum C
    Int J Hyperthermia; 2014 Feb; 30(1):66-74. PubMed ID: 24286257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal radiation protection by lateral heat dissipation. II. Full-scale laboratory study.
    Piergallini JR; Stoll AM
    Aerosp Med; 1974 Apr; 45(4):403-6. PubMed ID: 4821735
    [No Abstract]   [Full Text] [Related]  

  • 20. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions.
    Hayat T; Haider F; Muhammad T; Alsaedi A
    PLoS One; 2017; 12(4):e0174938. PubMed ID: 28380014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.