These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A nonlinear model of thermoacoustic devices. Karpov S; Prosperetti A J Acoust Soc Am; 2002 Oct; 112(4):1431-44. PubMed ID: 12398451 [TBL] [Abstract][Full Text] [Related]
5. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface. Weiland NT; Zinn BT J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014 [TBL] [Abstract][Full Text] [Related]
6. Thermal modeling and performance analysis of a thermoacoustic refrigerator. Holmberg DG; Chen GS; Lin HT; Wo AM J Acoust Soc Am; 2003 Aug; 114(2):782-91. PubMed ID: 12942961 [TBL] [Abstract][Full Text] [Related]
7. Thermoacoustic power conversion using a piezoelectric transducer. Jensen C; Raspet R J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205 [TBL] [Abstract][Full Text] [Related]
8. The effect of the physical properties of the tube wall on the attenuation of sound in evaporating and condensing gas-vapor mixtures. Slaton WV; Raspet R; Hickey CJ J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2120-4. PubMed ID: 11108349 [TBL] [Abstract][Full Text] [Related]
9. Condensation in a steady-flow thermoacoustic refrigerator. Hiller RA; Swift GW J Acoust Soc Am; 2000 Oct; 108(4):1521-7. PubMed ID: 11051479 [TBL] [Abstract][Full Text] [Related]
10. Acoustical power amplification and damping by temperature gradients. Biwa T; Komatsu R; Yazaki T J Acoust Soc Am; 2011 Jan; 129(1):132-7. PubMed ID: 21302995 [TBL] [Abstract][Full Text] [Related]
11. Effects of thermal diffusion on sound attenuation in evaporating and condensing gas-vapor mixtures in tubes. Hickey CJ; Raspet R; Slaton WV J Acoust Soc Am; 2000 Mar; 107(3):1126-30. PubMed ID: 10738769 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine. Luo EC; Dai W; Zhang Y; Ling H Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679 [TBL] [Abstract][Full Text] [Related]
13. Acoustics and precondensation phenomena in gas-vapor saturated mixtures. Guianvarc'h C; Bruneau M; Gavioso RM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023208. PubMed ID: 25353596 [TBL] [Abstract][Full Text] [Related]
14. Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation. Sharipov F; Kalempa D J Acoust Soc Am; 2008 Oct; 124(4):1993-2001. PubMed ID: 19062839 [TBL] [Abstract][Full Text] [Related]
15. Erratum: Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach [J. Acoust. Soc. Am. 141 (6), 4398-4407 (2017)]. Yasui K; Izu N J Acoust Soc Am; 2020 Jan; 147(1):267. PubMed ID: 32006972 [TBL] [Abstract][Full Text] [Related]
16. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine. Abd El-Rahman AI; Abdel-Rahman E J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100 [TBL] [Abstract][Full Text] [Related]