These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12398451)

  • 1. A nonlinear model of thermoacoustic devices.
    Karpov S; Prosperetti A
    J Acoust Soc Am; 2002 Oct; 112(4):1431-44. PubMed ID: 12398451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of inert gas-condensing vapor thermoacoustics: transport equations.
    Slaton WV; Raspet R; Hickey CJ; Hiller RA
    J Acoust Soc Am; 2002 Oct; 112(4):1423-30. PubMed ID: 12398450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal modeling and performance analysis of a thermoacoustic refrigerator.
    Holmberg DG; Chen GS; Lin HT; Wo AM
    J Acoust Soc Am; 2003 Aug; 114(2):782-91. PubMed ID: 12942961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Working gases in thermoacoustic engines.
    Belcher JR; Slaton WV; Raspet R; Bass HE; Lightfoot J
    J Acoust Soc Am; 1999 May; 105(5):2677-84. PubMed ID: 10335618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic streaming in annular thermoacoustic prime-movers.
    Gusev V; Job S; Bailliet H; Lotton P; Bruneau M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):934-45. PubMed ID: 11008797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
    de Jong JA; Wijnant YH; de Boer A
    J Acoust Soc Am; 2014 Mar; 135(3):1149-58. PubMed ID: 24606258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear two-dimensional model for thermoacoustic engines.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2076-86. PubMed ID: 12051428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on "Linear and nonlinear frequency shifts in acoustical resonators with varying cross sections" [J. Acoust. Soc. Am. 110, 109-119 (2001)].
    Mortell MP; Seymour BR
    J Acoust Soc Am; 2008 Dec; 124(6):3381-5; discussion 3386-9. PubMed ID: 19206765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoacoustic properties of fibrous materials.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jun; 127(6):3470-84. PubMed ID: 20550247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum: Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach [J. Acoust. Soc. Am. 141 (6), 4398-4407 (2017)].
    Yasui K; Izu N
    J Acoust Soc Am; 2020 Jan; 147(1):267. PubMed ID: 32006972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear acoustic wave equations with fractional loss operators.
    Prieur F; Holm S
    J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comment on "Acoustic chaos in a duct with two separate sound sources" [J. Acoust. Soc. Am. 110, 120-126 (2001)].
    Castrejón-Pita AA; Castrejón-Pita JR; Huelsz G; Sarmiento-Galán A
    J Acoust Soc Am; 2008 Nov; 124(5):2702-5. PubMed ID: 19045755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine.
    Abd El-Rahman AI; Abdel-Rahman E
    J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).
    Prieur F; Vilenskiy G; Holm S
    J Acoust Soc Am; 2012 Oct; 132(4):2169-72. PubMed ID: 23039412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly.
    Penelet G; Watanabe T; Biwa T
    J Acoust Soc Am; 2021 Mar; 149(3):1674. PubMed ID: 33765805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.