These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12398471)

  • 1. Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV; Galvin JJ
    J Acoust Soc Am; 2002 Oct; 112(4):1664-74. PubMed ID: 12398471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplitude mapping and phoneme recognition in cochlear implant listeners.
    Zeng FG; Galvin JJ
    Ear Hear; 1999 Feb; 20(1):60-74. PubMed ID: 10037066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant.
    Fu QJ; Shannon RV
    Ear Hear; 1999 Aug; 20(4):321-31. PubMed ID: 10466568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of frequency allocation on phoneme recognition with the nucleus 22 cochlear implant.
    Friesen LM; Shannon RV; Slattery WH
    Am J Otol; 1999 Nov; 20(6):729-34. PubMed ID: 10565716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor.
    Fishman KE; Shannon RV; Slattery WH
    J Speech Lang Hear Res; 1997 Oct; 40(5):1201-15. PubMed ID: 9328890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electrode location on speech recognition with the Nucleus-22 cochlear implant.
    Friesen LM; Shannon RV; Slattery WH
    J Am Acad Audiol; 2000 Sep; 11(8):418-28. PubMed ID: 11012237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech perception with mono- and quadrupolar electrode configurations: a crossover study.
    Mens LH; Berenstein CK
    Otol Neurotol; 2005 Sep; 26(5):957-64. PubMed ID: 16151343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of spectrally asynchronous speech by normal-hearing listeners and Nucleus-22 cochlear implant users.
    Fu QJ; Galvin JJ
    J Acoust Soc Am; 2001 Mar; 109(3):1166-72. PubMed ID: 11303930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study.
    Wolfe J; Parkinson A; Schafer EC; Gilden J; Rehwinkel K; Mansanares J; Coughlan E; Wright J; Torres J; Gannaway S
    Otol Neurotol; 2012 Jun; 33(4):553-60. PubMed ID: 22588233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dynamic range and amplitude mapping on phoneme recognition in Nucleus-22 cochlear implant users.
    Fu QJ; Shannon RV
    Ear Hear; 2000 Jun; 21(3):227-35. PubMed ID: 10890731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech coding strategies and revised cochlear implant candidacy: an analysis of post-implant performance.
    David EE; Ostroff JM; Shipp D; Nedzelski JM; Chen JM; Parnes LS; Zimmerman K; Schramm D; Seguin C
    Otol Neurotol; 2003 Mar; 24(2):228-33. PubMed ID: 12621337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the growth of open-set speech perception between the nucleus 22 and nucleus 24 cochlear implant systems.
    Waltzman SB; Cohen NL; Roland JT
    Am J Otol; 1999 Jul; 20(4):435-41. PubMed ID: 10431883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multicentre clinical evaluation of paediatric cochlear implant users upgrading to the Nucleus(®) 6 system.
    Plasmans A; Rushbrooke E; Moran M; Spence C; Theuwis L; Zarowski A; Offeciers E; Atkinson B; McGovern J; Dornan D; Leigh J; Kaicer A; Hollow R; Martelli L; Looi V; Nel E; Del Dot J; Cowan R; Mauger SJ
    Int J Pediatr Otorhinolaryngol; 2016 Apr; 83():193-9. PubMed ID: 26968076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds.
    Smoorenburg GF; Willeboer C; van Dijk JE
    Audiol Neurootol; 2002; 7(6):335-47. PubMed ID: 12401965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of adult Nucleus® 5 cochlear implant users to the Nucleus® 6 system.
    De Ceulaer G; Swinnen F; Pascoal D; Philips B; Killian M; James C; Govaerts PJ; Dhooge I
    Cochlear Implants Int; 2015 Jul; 16(4):222-32. PubMed ID: 25284643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing.
    Fu QJ; Shannon RV
    J Acoust Soc Am; 1999 Mar; 105(3):1889-900. PubMed ID: 10089611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-to-electrode allocation and speech perception with cochlear implants.
    McKay CM; Henshall KR
    J Acoust Soc Am; 2002 Feb; 111(2):1036-44. PubMed ID: 11863160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode discrimination and speech recognition in postlingually deafened adult cochlear implant subjects.
    Zwolan TA; Collins LM; Wakefield GH
    J Acoust Soc Am; 1997 Dec; 102(6):3673-85. PubMed ID: 9407659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies.
    Donaldson GS; Nelson DA
    J Acoust Soc Am; 2000 Mar; 107(3):1645-58. PubMed ID: 10738818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The right information may matter more than frequency-place alignment: simulations of frequency-aligned and upward shifting cochlear implant processors for a shallow electrode array insertion.
    Faulkner A; Rosen S; Norman C
    Ear Hear; 2006 Apr; 27(2):139-52. PubMed ID: 16518142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.