These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12398471)

  • 21. Effect of stimulation rate on phoneme recognition by nucleus-22 cochlear implant listeners.
    Fu QJ; Shannon RV
    J Acoust Soc Am; 2000 Jan; 107(1):589-97. PubMed ID: 10641667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of presentation level on phoneme and sentence recognition in quiet by cochlear implant listeners.
    Donaldson GS; Allen SL
    Ear Hear; 2003 Oct; 24(5):392-405. PubMed ID: 14534410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing.
    Fu QJ; Shannon RV; Wang X
    J Acoust Soc Am; 1998 Dec; 104(6):3586-96. PubMed ID: 9857517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Benefits of upgrading to the Nucleus
    Todorov MJ; Galvin KL
    Cochlear Implants Int; 2018 Jul; 19(4):210-215. PubMed ID: 29566583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of parametric variations of cochlear implant processors on speech understanding.
    Loizou PC; Poroy O; Dorman M
    J Acoust Soc Am; 2000 Aug; 108(2):790-802. PubMed ID: 10955646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of speech perception performance between Sprint/Esprit 3G and Freedom processors in children implanted with nucleus cochlear implants.
    Santarelli R; Magnavita V; De Filippi R; Ventura L; Genovese E; Arslan E
    Otol Neurotol; 2009 Apr; 30(3):304-12. PubMed ID: 19225440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Rate discrimination and tone recognition in mandarin-speaking cochlear-implant listeners].
    Wei C; Cao K; Wang Z
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1999 Apr; 34(2):84-8. PubMed ID: 12764854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The identification of consonants and vowels by cochlear implant patients using a 6-channel continuous interleaved sampling processor and by normal-hearing subjects using simulations of processors with two to nine channels.
    Dorman MF; Loizou PC
    Ear Hear; 1998 Apr; 19(2):162-6. PubMed ID: 9562538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the effects of temporal and spatial interactions on speech-recognition skills in cochlear-implant subjects.
    Throckmorton CS; Collins LM
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):861-73. PubMed ID: 9972571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of stimulation rate on speech recognition with cochlear implants.
    Friesen LM; Shannon RV; Cruz RJ
    Audiol Neurootol; 2005; 10(3):169-84. PubMed ID: 15724088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cochlear implant speech processor frequency allocations may influence pitch perception.
    Reiss LA; Gantz BJ; Turner CW
    Otol Neurotol; 2008 Feb; 29(2):160-7. PubMed ID: 18025998
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients.
    Schvartz-Leyzac KC; Zwolan TA; Pfingst BE
    Cochlear Implants Int; 2017 Nov; 18(6):324-334. PubMed ID: 28793847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Speech intelligibility as a function of the number of channels of stimulation for normal-hearing listeners and patients with cochlear implants.
    Dorman MF; Loizou PC
    Am J Otol; 1997 Nov; 18(6 Suppl):S113-4. PubMed ID: 9391623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing electrode and filter selection in cochlear implant speech processor maps.
    Henshall KR; McKay CM
    J Am Acad Audiol; 2001 Oct; 12(9):478-89. PubMed ID: 11699819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of vowel recognition for Ineraid patients fit with continuous interleaved sampling processors.
    Dorman MF; Loizou PC
    J Acoust Soc Am; 1997 Jul; 102(1):581-7. PubMed ID: 9228819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benefits of Adaptive Signal Processing in a Commercially Available Cochlear Implant Sound Processor.
    Wolfe J; Neumann S; Marsh M; Schafer E; Lianos L; Gilden J; O'Neill L; Arkis P; Menapace C; Nel E; Jones M
    Otol Neurotol; 2015 Aug; 36(7):1181-90. PubMed ID: 26049314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral and temporal cues in cochlear implant speech perception.
    Nie K; Barco A; Zeng FG
    Ear Hear; 2006 Apr; 27(2):208-17. PubMed ID: 16518146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Within-patient longitudinal speech reception measures with continuous interleaved sampling processors for ineraid implanted subjects.
    Pelizzone M; Cosendai G; Tinembart J
    Ear Hear; 1999 Jun; 20(3):228-37. PubMed ID: 10386849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residual speech recognition and cochlear implant performance: effects of implantation criteria.
    Rubinstein JT; Parkinson WS; Tyler RS; Gantz BJ
    Am J Otol; 1999 Jul; 20(4):445-52. PubMed ID: 10431885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.