BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12398518)

  • 1. Chemoenzymatic synthesis of phosphocarnitine enantiomers.
    Mikołajczyk M; ŁUczak J; Kiełbasinski P
    J Org Chem; 2002 Nov; 67(22):7872-5. PubMed ID: 12398518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic synthesis of phosphocarnitine, phosphogabob and fosfomycin.
    Wang K; Zhang Y; Yuan C
    Org Biomol Chem; 2003 Oct; 1(20):3564-9. PubMed ID: 14599018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemo-enzymatic synthesis of levodropropizine.
    Caselli E; Tosi G; Forni A; Bucciarelli M; Prati F
    Farmaco; 2003 Oct; 58(10):1029-32. PubMed ID: 14505734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient chemoenzymatic synthesis of chiral pincer ligands.
    Felluga F; Baratta W; Fanfoni L; Pitacco G; Rigo P; Benedetti F
    J Org Chem; 2009 May; 74(9):3547-50. PubMed ID: 19331344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first conversion of camptothecin to (S)-mappicine by an efficient chemoenzymatic method.
    Das B; Madhusudhan P; Kashinatham A
    Bioorg Med Chem Lett; 1998 Jun; 8(11):1403-6. PubMed ID: 9871774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of 1,3-dithianes and 1,3-dithiolanes. Baker's yeast reduction and lipase-catalyzed resolution for synthesis of enantiopure derivatives.
    Anthonsen T; Hoff BH; Hofsløkken NU; Skattebøl L; Sundby E
    Acta Chem Scand (Cph); 1999 May; 53(5):360-5. PubMed ID: 10353187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of 3-chloro-1,2-propanediol with Saccharomyces cerevisiae.
    Bel-Rhlid R; Talmon JP; Fay LB; Juillerat MA
    J Agric Food Chem; 2004 Oct; 52(20):6165-9. PubMed ID: 15453682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel chemoenzymatic strategy for the synthesis of enantiomerically pure secondary alcohols with sterically similar substituents.
    Abad JL; Soldevila C; Camps F; Clapés P
    J Org Chem; 2003 Jun; 68(13):5351-6. PubMed ID: 12816498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective synthesis of natural trinorsesquiterpene tetralones by chemo-enzymatic approaches.
    Serra S
    Nat Prod Commun; 2013 Jul; 8(7):863-8. PubMed ID: 23980412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoenzymatic synthesis of rivastigmine based on lipase-catalyzed processes.
    Mangas-Sánchez J; Rodríguez-Mata M; Busto E; Gotor-Fernández V; Gotor V
    J Org Chem; 2009 Aug; 74(15):5304-10. PubMed ID: 19555095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic Synthesis of trans-β-Aryl-δ-hydroxy-γ-lactones and Enzymatic Kinetic Resolution of Their Racemic Mixtures.
    Skrobiszewski A; Gładkowski W; Maciejewska G; Wawrzeńczyk C
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-carnitine via enzyme-catalyzed oxidative kinetic resolution.
    Ditullio D; Anderson D; Chen CS; Sih CJ
    Bioorg Med Chem; 1994 Jun; 2(6):415-20. PubMed ID: 8000862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for the chemoenzymatic preparation of optically active 1-alkyn-3-ols.
    Glänzer BI; Königsberger K; Berger B; Faber K; Griengl H
    Chem Phys Lipids; 1990 Apr; 54(1):43-8. PubMed ID: 2113835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemo-enzymatic synthesis of the antidepressant duloxetine and its enantiomer.
    Liu H; Hoff BH; Anthonsen T
    Chirality; 2000 Jan; 12(1):26-9. PubMed ID: 10602263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric chemoenzymatic synthesis of 1,3-diols and 2,4-disubstituted aryloxetanes by using whole cell biocatalysts.
    Vitale P; Perna FM; Agrimi G; Scilimati A; Salomone A; Cardellicchio C; Capriati V
    Org Biomol Chem; 2016 Dec; 14(48):11438-11445. PubMed ID: 27878162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies.
    Jung J; Park HJ; Uhm KN; Kim D; Kim HK
    Biochim Biophys Acta; 2010 Sep; 1804(9):1841-9. PubMed ID: 20601218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of whole-cell transamination with Saccharomyces cerevisiae using metabolic engineering and cell pre-adaptation.
    Weber N; Gorwa-Grauslund M; Carlquist M
    Microb Cell Fact; 2017 Jan; 16(1):3. PubMed ID: 28049528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights on the baker's yeast-mediated hydration of oleic acid: the bacterial contaminants of yeast are responsible for the stereoselective formation of (R)-10-hydroxystearic acid.
    Serra S; De Simeis D
    J Appl Microbiol; 2018 Mar; 124(3):719-729. PubMed ID: 29280549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic Approach for the Synthesis of Enantiopure Acebutolol as a β₁-Selective Blocker.
    Banoth L; Thakur NS; Bhaumik J; Banerjee UC
    Chirality; 2015 Jun; 27(6):382-91. PubMed ID: 25977108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipase-catalyzed kinetic resolution as key step in the synthesis of enantiomerically pure σ ligands with 2-benzopyran structure.
    Knappmann I; Lehmkuhl K; Köhler J; Schepmann D; Giera M; Bracher F; Wünsch B
    Bioorg Med Chem; 2017 Jul; 25(13):3384-3395. PubMed ID: 28501431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.