These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12398626)

  • 1. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials.
    Crooker SA; Hollingsworth JA; Tretiak S; Klimov VI
    Phys Rev Lett; 2002 Oct; 89(18):186802. PubMed ID: 12398626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires.
    Zheng K; Žídek K; Abdellah M; Torbjörnsson M; Chábera P; Shao S; Zhang F; Pullerits T
    J Phys Chem A; 2013 Jul; 117(29):5919-25. PubMed ID: 23176171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonradiative energy transfer in colloidal CdSe nanoplatelet films.
    Guzelturk B; Olutas M; Delikanli S; Kelestemur Y; Erdem O; Demir HV
    Nanoscale; 2015 Feb; 7(6):2545-51. PubMed ID: 25572445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient quantum dot-quantum dot and quantum dot-dye energy transfer in biotemplated assemblies.
    Achermann M; Jeong S; Balet L; Montano GA; Hollingsworth JA
    ACS Nano; 2011 Mar; 5(3):1761-8. PubMed ID: 21314178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.
    Nguyen D; Nguyen HA; Lyding JW; Gruebele M
    ACS Nano; 2017 Jun; 11(6):6328-6335. PubMed ID: 28525955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time- and polarization-resolved optical spectroscopy of colloidal CdSe nanocrystal quantum dots in high magnetic fields.
    Furis M; Hollingsworth JA; Klimov VI; Crooker SA
    J Phys Chem B; 2005 Aug; 109(32):15332-8. PubMed ID: 16852944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A size dependent discontinuous decay rate for the exciton emission in ZnO quantum dots.
    Jacobsson TJ; Viarbitskaya S; Mukhtar E; Edvinsson T
    Phys Chem Chem Phys; 2014 Jul; 16(27):13849-57. PubMed ID: 24658340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules.
    Koole R; Liljeroth P; de Mello Donega C; Vanmaekelbergh D; Meijerink A
    J Am Chem Soc; 2006 Aug; 128(32):10436-41. PubMed ID: 16895408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocharging Artifacts in Measurements of Electron Transfer in Quantum-Dot-Sensitized Mesoporous Titania Films.
    Makarov NS; McDaniel H; Fuke N; Robel I; Klimov VI
    J Phys Chem Lett; 2014 Jan; 5(1):111-8. PubMed ID: 26276189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation.
    Zheng K; Žídek K; Abdellah M; Zhu N; Chábera P; Lenngren N; Chi Q; Pullerits T
    J Am Chem Soc; 2014 Apr; 136(17):6259-68. PubMed ID: 24684141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super sensitization: grand charge (hole/electron) separation in ATC dye sensitized CdSe, CdSe/ZnS type-I, and CdSe/CdTe type-II core-shell quantum dots.
    Debnath T; Maity P; Ghosh HN
    Chemistry; 2014 Oct; 20(41):13305-13. PubMed ID: 25179856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of quantum dot luminescence excitation within implanted SiO2:Si:C films.
    Zatsepin AF; Buntov EA; Kortov VS; Tetelbaum DI; Mikhaylov AN; Belov AI
    J Phys Condens Matter; 2012 Feb; 24(4):045301. PubMed ID: 22214549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier density dependence of plasmon-enhanced nonradiative energy transfer in a hybrid quantum well-quantum dot structure.
    Higgins LJ; Karanikolas VD; Marocico CA; Bell AP; Sadler TC; Parbrook PJ; Bradley AL
    Opt Express; 2015 Jan; 23(2):1377-87. PubMed ID: 25835896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing lipid coating dynamics of quantum dot core micelles via Förster resonance energy transfer.
    Zhao Y; Schapotschnikow P; Skajaa T; Vlugt TJ; Mulder WJ; de Mello Donegá C; Meijerink A
    Small; 2014 Mar; 10(6):1163-70. PubMed ID: 24343988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct spectroscopic evidence of ultrafast electron transfer from a low band gap polymer to CdSe quantum dots in hybrid photovoltaic thin films.
    Couderc E; Greaney MJ; Brutchey RL; Bradforth SE
    J Am Chem Soc; 2013 Dec; 135(49):18418-26. PubMed ID: 24199693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.