These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 12398683)

  • 1. Holographic imaging of atoms using thermal neutrons.
    Cser L; Török G; Krexner G; Sharkov I; Faragó B
    Phys Rev Lett; 2002 Oct; 89(17):175504. PubMed ID: 12398683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutrons in the low-background Ge-detector vicinity estimated from different activation reactions.
    Jovančević N; Krmar M
    Appl Radiat Isot; 2011 Mar; 69(3):629-35. PubMed ID: 21193316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-energy and thermal-neutron imaging and modeling with an amorphous silicon flat-panel detector.
    Claytor TN; Taddeucci TN; Hills CR; Summa DA; Davis AW; McDonald TE; Schwab MJ
    Appl Radiat Isot; 2004 Oct; 61(4):579-84. PubMed ID: 15246402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic structure holography using thermal neutrons.
    Sur B; Rogge RB; Hammond RP; Anghel VN; Katsaras J
    Nature; 2001 Nov; 414(6863):525-7. PubMed ID: 11734848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radioactivity in atomic-bomb samples from exposure to environmental neutrons.
    Endo S; Shizuma K; Tanaka K; Ishikawa M; Rühm W; Egbert SD; Hoshi M
    Health Phys; 2007 Dec; 93(6):689-95. PubMed ID: 17993849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DUNBID, the Delft University neutron backscattering imaging detector.
    Bom VR; van Eijk CW; Ali MA
    Appl Radiat Isot; 2005; 63(5-6):559-63. PubMed ID: 16029950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron-based sterilization of anthrax contamination.
    Liu B; Wang Q
    Health Phys; 2006 May; 90(5 Suppl):S80-4. PubMed ID: 16607173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional differential calibration method for a neutron dosemeter using a thermal neutron beam.
    Matsumoto T; Harano H; Masuda A; Nishiyama J; Matsue H; Uritani A; Nunomiya T
    Radiat Prot Dosimetry; 2013 Aug; 155(4):505-11. PubMed ID: 23509397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Al2O3:C,Mg fluorescent nuclear track detectors for passive neutron dosimetry.
    Sykora GJ; Akselrod MS; Salasky M; Marino SA
    Radiat Prot Dosimetry; 2007; 126(1-4):278-83. PubMed ID: 17522030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac.
    Konefał A; Orlef A; Dybek M; Maniakowski Z; Polaczek-Grelik K; Zipper W
    Phys Med; 2008 Dec; 24(4):212-8. PubMed ID: 18339569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.
    Porras I
    Phys Med Biol; 2008 Apr; 53(7):L1-9. PubMed ID: 18356577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy.
    Kapadia AJ; Tourassi GD; Sharma AC; Crowell AS; Kiser MR; Howell CR
    Phys Med Biol; 2008 May; 53(10):2633-49. PubMed ID: 18443387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of CdZnTe as neutron detector around medical accelerators.
    Martín-Martín A; Iñiguez MP; Luke PN; Barquero R; Lorente A; Morchón J; Gallego E; Quincoces G; Martí-Climent JM
    Radiat Prot Dosimetry; 2009 Feb; 133(4):193-9. PubMed ID: 19329512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary results on bubble detector as personal neutron dosemeter.
    Ponraju D; Krishnan H; Viswanathan S; Indira R
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):177-81. PubMed ID: 21217133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field.
    Kim MS; Lee BC; Hwang SY; Kim H; Jun BJ
    Phys Med Biol; 2007 May; 52(9):2553-66. PubMed ID: 17440252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility study of SPECT system for online dosimetry imaging in boron neutron capture therapy.
    Hales B; Katabuchi T; Hayashizaki N; Terada K; Igashira M; Kobayashi T
    Appl Radiat Isot; 2014 Jun; 88():167-70. PubMed ID: 24378365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applicability of convex hull in multiple detector response space for neutron dose measurements.
    Hashimoto M; Iimoto T; Kosako T
    Radiat Prot Dosimetry; 2009 Aug; 136(1):1-10. PubMed ID: 19617240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of neutron-monitor detector using liquid organic scintillator coupled with 6Li + ZnS(Ag) Sheet.
    Sato T; Endo A; Yamaguchi Y; Takahashi F
    Radiat Prot Dosimetry; 2004; 110(1-4):255-61. PubMed ID: 15353655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.