These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12399161)

  • 81. A role for bioactivation and covalent binding within epidermal keratinocytes in sulfonamide-induced cutaneous drug reactions.
    Reilly TP; Lash LH; Doll MA; Hein DW; Woster PM; Svensson CK
    J Invest Dermatol; 2000 Jun; 114(6):1164-73. PubMed ID: 10844561
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Synthesis and in vitro toxicity of hydroxylamine metabolites of sulfonamides.
    Rieder MJ; Uetrecht J; Shear NH; Spielberg SP
    J Pharmacol Exp Ther; 1988 Feb; 244(2):724-8. PubMed ID: 3346843
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products.
    Andriamalala A; Vieublé-Gonod L; Dumeny V; Cambier P
    Chemosphere; 2018 Jan; 191():607-615. PubMed ID: 29078186
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Improving the bioremoval of sulfamethoxazole and alleviating cytotoxicity of its biotransformation by laccase producing system under coculture of Pycnoporus sanguineus and Alcaligenes faecalis.
    Li X; Xu QM; Cheng JS; Yuan YJ
    Bioresour Technol; 2016 Nov; 220():333-340. PubMed ID: 27591519
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Significantly Different Covalent Binding of Oxidative Metabolites, Acyl Glucuronides, and S-Acyl CoA Conjugates Formed from Xenobiotic Carboxylic Acids in Human Liver Microsomes.
    Darnell M; Breitholtz K; Isin EM; Jurva U; Weidolf L
    Chem Res Toxicol; 2015 May; 28(5):886-96. PubMed ID: 25803559
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Metabolic activation of the serotonergic neurotoxin para-chloroamphetamine to chemically reactive intermediates by hepatic and brain microsomal preparations.
    Miller KJ; Anderholm DC; Ames MM
    Biochem Pharmacol; 1986 May; 35(10):1737-42. PubMed ID: 3707603
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms.
    Chu Y; Zhang C; Wang R; Chen X; Ren N; Ho SH
    Water Res; 2022 Aug; 221():118834. PubMed ID: 35839594
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Multiple adduction reactions of nitroso sulfamethoxazole with cysteinyl residues of peptides and proteins: implications for hapten formation.
    Callan HE; Jenkins RE; Maggs JL; Lavergne SN; Clarke SE; Naisbitt DJ; Park BK
    Chem Res Toxicol; 2009 May; 22(5):937-48. PubMed ID: 19358516
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Microsomal metabolism of the 5-lipoxygenase inhibitor L-739,010: evidence for furan bioactivation.
    Zhang KE; Naue JA; Arison B; Vyas KP
    Chem Res Toxicol; 1996 Mar; 9(2):547-54. PubMed ID: 8839061
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Haemolytic anaemia and renal failure associated with antibodies to trimethoprim and sulfamethoxazole.
    Arndt PA; Garratty G; Wolf CF; Rivera M
    Transfus Med; 2011 Jun; 21(3):194-8. PubMed ID: 21175904
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Immunogenicity of trimethoprim/sulfamethoxazole in a macaque model of HIV infection.
    Wong YY; Rakasz EG; Gasper DJ; Friedrich TC; Trepanier LA
    Toxicology; 2016 Aug; 368-369():10-18. PubMed ID: 27565715
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Possible bioactivation pathways of lamotrigine.
    Lu W; Uetrecht JP
    Drug Metab Dispos; 2007 Jul; 35(7):1050-6. PubMed ID: 17409271
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A novel lymphocyte toxicity assay to assess drug hypersensitivity syndromes.
    Neuman MG; Malkiewicz IM; Shear NH
    Clin Biochem; 2000 Oct; 33(7):517-24. PubMed ID: 11124336
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Biotransformation mechanism of Vibrio diabolicus to sulfamethoxazole at transcriptional level.
    Wang Q; Wang H; Jiang Y; Lv M; Wang X; Chen L
    J Hazard Mater; 2021 Jun; 411():125023. PubMed ID: 33429311
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Biotransformation of sulfamethoxazole by a novel strain, Nitratireductor sp. GZWM139: Characterized performance, metabolic mechanism and application potential.
    Zhang M; Fan D; Su C; Pan L; He Q; Li Z; Liu C
    J Hazard Mater; 2023 Jan; 441():129861. PubMed ID: 36063713
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Protein targets of reactive metabolites of thiobenzamide in rat liver in vivo.
    Ikehata K; Duzhak TG; Galeva NA; Ji T; Koen YM; Hanzlik RP
    Chem Res Toxicol; 2008 Jul; 21(7):1432-42. PubMed ID: 18547066
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Activation CuFe
    Yan J; Peng J; Lai L; Ji F; Zhang Y; Lai B; Chen Q; Yao G; Chen X; Song L
    Environ Sci Technol; 2018 Dec; 52(24):14302-14310. PubMed ID: 30424608
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Metabolism of Sulfamethoxazole by the Model Plant Arabidopsis thaliana.
    Huynh K; Reinhold D
    Environ Sci Technol; 2019 May; 53(9):4901-4911. PubMed ID: 30917276
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Levofloxacin and sulfamethoxazole induced alterations of biomolecules in Pseudokirchneriella subcapitata.
    Xiong Q; Liu YS; Hu LX; Shi ZQ; Ying GG
    Chemosphere; 2020 Aug; 253():126722. PubMed ID: 32289608
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Activating interactions of sulfanilamides with T cell receptors.
    Watkins S; Pichler WJ
    Open J Immunol; 2013 Sep; 3(3):139-157. PubMed ID: 36172594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.