BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12400093)

  • 1. Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy.
    Romeo MJ; Wood BR; Quinn MA; McNaughton D
    Biopolymers; 2003; 72(1):69-76. PubMed ID: 12400093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells.
    Wong PT; Senterman MK; Jackli P; Wong RK; Salib S; Campbell CE; Feigel R; Faught W; Fung Kee Fung M
    Biopolymers; 2002; 67(6):376-86. PubMed ID: 12209445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fourier transform infrared spectroscopy study on normal and malignant tissues of cervix].
    Li WX; Zheng QQ; Wang P; Li YQ; Chen GH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Oct; 26(10):1833-7. PubMed ID: 17205732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of benign cellular changes in diagnosis of cervical cancer using IR microspectroscopy.
    Romeo MJ; Quinn MA; Burden FR; McNaughton D
    Biopolymers; 2002; 67(4-5):362-6. PubMed ID: 12012467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis.
    Cohenford MA; Godwin TA; Cahn F; Bhandare P; Caputo TA; Rigas B
    Gynecol Oncol; 1997 Jul; 66(1):59-65. PubMed ID: 9234922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo).
    Neviliappan S; Fang Kan L; Tiang Lee Walter T; Arulkumaran S; Wong PT
    Gynecol Oncol; 2002 Apr; 85(1):170-4. PubMed ID: 11925139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The analysis of exfoliated cervical cells by infrared microscopy.
    Lowry SR
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):169-77. PubMed ID: 9551648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared microspectroscopy and artificial neural networks in the diagnosis of cervical cancer.
    Romeo M; Burden F; Quinn M; Wood B; McNaughton D
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):179-87. PubMed ID: 9551649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy.
    Chiriboga L; Xie P; Yee H; Zarou D; Zakim D; Diem M
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):219-29. PubMed ID: 9551653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting structural changes at the molecular level with Fourier transform infrared spectroscopy. A potential tool for prescreening preinvasive lesions of the cervix.
    Yazdi HM; Bertrand MA; Wong PT
    Acta Cytol; 1996; 40(4):664-8. PubMed ID: 8693883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening.
    Fung Kee Fung M; Senterman M; Eid P; Faught W; Mikhael NZ; Wong PT
    Gynecol Oncol; 1997 Jul; 66(1):10-5. PubMed ID: 9234913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IR microspectroscopy: potential applications in cervical cancer screening.
    Walsh MJ; German MJ; Singh M; Pollock HM; Hammiche A; Kyrgiou M; Stringfellow HF; Paraskevaidis E; Martin-Hirsch PL; Martin FL
    Cancer Lett; 2007 Feb; 246(1-2):1-11. PubMed ID: 16713674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades.
    Purandare NC; Patel II; Trevisan J; Bolger N; Kelehan R; von Bünau G; Martin-Hirsch PL; Prendiville WJ; Martin FL
    Analyst; 2013 Jul; 138(14):3909-16. PubMed ID: 23338619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A falsely reassuring cervical smear in adenocarcinoma of the external os].
    Rooker D; Baalbergen A; Helmerhorst TJ
    Ned Tijdschr Geneeskd; 2008 Apr; 152(17):977-80. PubMed ID: 18549169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor marker studies of cervical smears. Potential for automation.
    Moncrieff D; Ormerod MG; Coleman DV
    Acta Cytol; 1984; 28(4):407-10. PubMed ID: 6205530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DCS liquid-based system is more effective than conventional smears to diagnosis of cervical lesions: study in high-risk population with biopsy-based confirmation.
    Longatto Filho A; Pereira SM; Di Loreto C; Utagawa ML; Makabe S; Sakamoto Maeda MY; Marques JA; Santoro CL; Castelo A
    Gynecol Oncol; 2005 May; 97(2):497-500. PubMed ID: 15863150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma.
    Mordechai S; Sahu RK; Hammody Z; Mark S; Kantarovich K; Guterman H; Podshyvalov A; Goldstein J; Argov S
    J Microsc; 2004 Jul; 215(Pt 1):86-91. PubMed ID: 15230879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on acute human infections using FTIR microspectroscopy and cluster analysis.
    Mordehai J; Ramesh J; Huleihel M; Cohen Z; Kleiner O; Talyshinsky M; Erukhimovitch V; Cahana A; Salman A; Sahu RK; Guterman H; Mordechai S
    Biopolymers; 2004 Mar; 73(4):494-502. PubMed ID: 14991667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of the cytology laboratory: specimen processing through diagnosis.
    Joste N
    Obstet Gynecol Clin North Am; 2008 Dec; 35(4):549-63; viii. PubMed ID: 19061816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of contextual analysis for computer classification of cervical smears.
    Garcia GL; Kuklinski WS; Zahniser DJ; Oud PS; Vooys PG; Brenner JF
    Cytometry; 1987 Mar; 8(2):210-6. PubMed ID: 3556101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.