These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 12400837)

  • 1. Role of macropore continuity and tortuosity on solute transport in soils: 2. Interactions with model assumptions for macropore description.
    Allaire SE; Gupta SC; Nieber J; Moncrief JF
    J Contam Hydrol; 2002 Oct; 58(3-4):283-98. PubMed ID: 12400837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions.
    Allaire SE; Gupta SC; Nieber J; Moncrief JF
    J Contam Hydrol; 2002 Oct; 58(3-4):299-321. PubMed ID: 12400838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-domain solute transfer and transport processes: evaluation in batch and transport experiments.
    Haws NW; Das BS; Rao PS
    J Contam Hydrol; 2004 Dec; 75(3-4):257-80. PubMed ID: 15610902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Macropore characteristics and its relationships with the preferential flow in broadleaved forest soils of Simian Mountains].
    Wang W; Zhang HJ; Cheng JH; Wu YH; Du SC; Wang R
    Ying Yong Sheng Tai Xue Bao; 2010 May; 21(5):1217-23. PubMed ID: 20707104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities.
    Arora B; Mohanty BP; McGuire JT
    Water Resour Res; 2011 Apr; 47(4):2010WR009451. PubMed ID: 24511165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents.
    Karup D; Moldrup P; Paradelo M; Katuwal S; Norgaard T; Greve MH; de Jonge LW
    J Contam Hydrol; 2016 Sep; 192():194-202. PubMed ID: 27509309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores.
    Pot V; Simůnek J; Benoit P; Coquet Y; Yra A; Martínez-Cordón MJ
    J Contam Hydrol; 2005 Dec; 81(1-4):63-88. PubMed ID: 16169123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty in dual permeability model parameters for structured soils.
    Arora B; Mohanty BP; McGuire JT
    Water Resour Res; 2012 Jan; 48(1):WR010500. PubMed ID: 24478531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of phosphate through artificial macropores during film and pulse flow.
    Gjettermann B; Hansen HC; Jensen HE; Hansen S
    J Environ Qual; 2004; 33(6):2263-71. PubMed ID: 15537949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing risk models of Cryptosporidium transport in soils from vegetated, tilted soilbox experiments.
    Harter T; Atwill ER; Hou L; Karle BM; Tate KW
    J Environ Qual; 2008; 37(1):245-58. PubMed ID: 18178898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrelationship of macropores and subsurface drainage for conservative tracer and pesticide transport.
    Fox GA; Malone R; Sabbagh GJ; Rojas K
    J Environ Qual; 2004; 33(6):2281-9. PubMed ID: 15537951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced transport of CeO2 nanoparticles in porous media by macropores.
    Fang J; Wang MH; Lin DH; Shen B
    Sci Total Environ; 2016 Feb; 543(Pt A):223-229. PubMed ID: 26584072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Soil macropore and its studying methodology].
    Liu W; Ou Z; Ying P
    Ying Yong Sheng Tai Xue Bao; 2001 Jun; 12(3):465-8. PubMed ID: 11758439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling macropore flow effects on pesticide leaching: inverse parameter estimation using microlysimeters.
    Roulier S; Jarvis N
    J Environ Qual; 2003; 32(6):2341-53. PubMed ID: 14674559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types.
    Kodesová R; Vignozzi N; Rohosková M; Hájková T; Kocárek M; Pagliai M; Kozák J; Simůnek J
    J Contam Hydrol; 2009 Feb; 104(1-4):107-25. PubMed ID: 19062128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential flow characteristics of reclaimed mine soils in a surface coal mine dump.
    Gang L; Jun L; Yexin L; Ting W; Yazhuo L; Xinyang F
    Environ Monit Assess; 2017 Jun; 189(6):266. PubMed ID: 28497296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of macropores in two forest soils on northern slope of Changbai Mountains].
    Li WL; Jin CJ; Wang AZ; Pei TF; Guan DX
    Ying Yong Sheng Tai Xue Bao; 2007 Jun; 18(6):1213-8. PubMed ID: 17763718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple Equation for Predicting Preferential Flow Solute Concentrations.
    Steenhuis TS; Boll J; Shalit G; Selker JS; Merwin IA
    J Environ Qual; 1994 Sep; 23(5):1058-1064. PubMed ID: 34872213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation and upscaling of dual-permeability model parameters for the transport of E. coli D21g in soils with preferential flow.
    Wang Y; Bradford SA; Šimůnek J
    J Contam Hydrol; 2014 Apr; 159():57-66. PubMed ID: 24589387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Soil macropore characteristics under typical vegetations in Liupan Mountains].
    Shi ZJ; Wang YH; Xu LH; Yu PT; Xiong W; Xu DP
    Ying Yong Sheng Tai Xue Bao; 2007 Dec; 18(12):2675-80. PubMed ID: 18333438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.