These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 12400864)
1. Flow cytometric comparison of haemocytes from three species of bivalve molluscs. Allam B; Ashton-Alcox KA; Ford SE Fish Shellfish Immunol; 2002 Aug; 13(2):141-58. PubMed ID: 12400864 [TBL] [Abstract][Full Text] [Related]
2. Flow cytometric assessment of haemocyte sub-populations in the European flat oyster, Ostrea edulis, haemolymph. Xue QG; Renault T; Chilmonczyk S Fish Shellfish Immunol; 2001 Oct; 11(7):557-67. PubMed ID: 11592584 [TBL] [Abstract][Full Text] [Related]
3. In vitro interactions between several species of harmful algae and haemocytes of bivalve molluscs. Hégaret H; da Silva PM; Wikfors GH; Haberkorn H; Shumway SE; Soudant P Cell Biol Toxicol; 2011 Aug; 27(4):249-66. PubMed ID: 21340660 [TBL] [Abstract][Full Text] [Related]
4. Effect of acclimatization on hemocyte functional characteristics of the Pacific oyster (Crassostrea gigas) and carpet shell clam (Ruditapes decussatus). Hurtado MÁ; da Silva PM; Le Goïc N; Palacios E; Soudant P Fish Shellfish Immunol; 2011 Dec; 31(6):978-84. PubMed ID: 21906683 [TBL] [Abstract][Full Text] [Related]
5. Effect of a mono-specific algal diet on immune functions in two bivalve species--Crassostrea gigas and Ruditapes philippinarum. Delaporte M; Soudant P; Moal J; Lambert C; Quéré C; Miner P; Choquet G; Paillard C; Samain JF J Exp Biol; 2003 Sep; 206(Pt 17):3053-64. PubMed ID: 12878673 [TBL] [Abstract][Full Text] [Related]
6. Differences in proteomic profile between two haemocyte types, granulocytes and hyalinocytes, of the flat oyster Ostrea edulis. de la Ballina NR; Villalba A; Cao A Fish Shellfish Immunol; 2020 May; 100():456-466. PubMed ID: 32205190 [TBL] [Abstract][Full Text] [Related]
7. First evidence of cell division in circulating haemocytes from the Manila clam Tapes philippinarum. Matozzo V; Marin MG; Cima F; Ballarin L Cell Biol Int; 2008 Jul; 32(7):865-8. PubMed ID: 18440833 [TBL] [Abstract][Full Text] [Related]
8. Effects of the pathogenic Vibrio tapetis on defence factors of susceptible and non-susceptible bivalve species: II. Cellular and biochemical changes following in vivo challenge. Allam B; Paillard C; Auffret M; Ford SE Fish Shellfish Immunol; 2006 Mar; 20(3):384-97. PubMed ID: 16005645 [TBL] [Abstract][Full Text] [Related]
9. Effects of the pathogenic Vibrio tapetis on defence factors of susceptible and non-susceptible bivalve species: I. Haemocyte changes following in vitro challenge. Allam B; Ford SE Fish Shellfish Immunol; 2006 Mar; 20(3):374-83. PubMed ID: 16023865 [TBL] [Abstract][Full Text] [Related]
10. Morphological characterization of the hemocytes of the clam, Ruditapes decussatus (Mollusca: Bivalvia). López C; Carballal MJ; Azevedo C; Villalba A J Invertebr Pathol; 1997 Jan; 69(1):51-7. PubMed ID: 9028928 [TBL] [Abstract][Full Text] [Related]
11. Proliferation and differentiation of circulating haemocytes of Ruditapes philippinarum as a response to bacterial challenge. Cima F; Matozzo V Fish Shellfish Immunol; 2018 Oct; 81():73-82. PubMed ID: 29981883 [TBL] [Abstract][Full Text] [Related]
12. Changes induced by two strains of Vibrio splendidus in haemocyte subpopulations of Mya arenaria, detected by flow cytometry with LysoTracker. Mateo DR; Spurmanis A; Siah A; Araya MT; Kulka M; Berthe FC; Johnson GR; Greenwood SJ Dis Aquat Organ; 2009 Nov; 86(3):253-62. PubMed ID: 20066960 [TBL] [Abstract][Full Text] [Related]
13. Flow cytometric analysis of European flat oyster, Ostrea edulis, haemocytes using a monoclonal antibody specific for granulocytes. Renault T; Xue QG; Chilmonczyk S Fish Shellfish Immunol; 2001 Apr; 11(3):269-74. PubMed ID: 11394693 [TBL] [Abstract][Full Text] [Related]
14. Morphology and mobility of oyster hemocytes: evidence for seasonal variations. McCormick-Ray MG; Howard T J Invertebr Pathol; 1991 Sep; 58(2):219-30. PubMed ID: 1783778 [TBL] [Abstract][Full Text] [Related]
15. A first insight into haemocytes of the smooth venus clam Callista chione. Matozzo V; Bailo L Fish Shellfish Immunol; 2015 Feb; 42(2):494-502. PubMed ID: 25481693 [TBL] [Abstract][Full Text] [Related]
16. Morphological and functional characterization of clam Ruditapes philippinarum haemocytes. Liu J; Zhao Y Fish Shellfish Immunol; 2018 Nov; 82():136-146. PubMed ID: 30099140 [TBL] [Abstract][Full Text] [Related]
17. Haemocyte parameters associated with resistance to brown ring disease in Ruditapes spp. clams. Allam B; Ashton-Alcox KA; Ford SE Dev Comp Immunol; 2001; 25(5-6):365-75. PubMed ID: 11356217 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on the hemocytes of subtropical oysters Saccostrea kegaki (Torigoe & Inaba, 1981), Ostrea circumpicta (Pilsbry, 1904), and Hyotissa hyotis (Linnaeus, 1758) in Jeju Island, Korea: morphology and functional aspects. Hong HK; Kang HS; Le TC; Choi KS Fish Shellfish Immunol; 2013 Dec; 35(6):2020-5. PubMed ID: 24121053 [TBL] [Abstract][Full Text] [Related]
19. Separation of European flat oyster, Ostrea edulis, haemocytes by density gradient centrifugation and SDS-PAGE characterisation of separated haemocyte sub-populations. Xue Q; Renault T; Cochennec N; Gerard A Fish Shellfish Immunol; 2000 Feb; 10(2):155-65. PubMed ID: 10938731 [TBL] [Abstract][Full Text] [Related]
20. Pinna nobilis: A big bivalve with big haemocytes? Matozzo V; Pagano M; Spinelli A; Caicci F; Faggio C Fish Shellfish Immunol; 2016 Aug; 55():529-34. PubMed ID: 27346153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]