These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12401084)

  • 1. Reactivity of M(II) metal-substituted derivatives of pig purple acid phosphatase (uteroferrin) with phosphate.
    Twitchett MB; Schenk G; Aquino MA; Yiu DT; Lau TC; Sykes AG
    Inorg Chem; 2002 Nov; 41(22):5787-94. PubMed ID: 12401084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of the divalent metal ion in uteroferrin using metal ion replacement and a comparison to isostructural biomimetics.
    Schenk G; Peralta RA; Batista SC; Bortoluzzi AJ; Szpoganicz B; Dick AK; Herrald P; Hanson GR; Szilagyi RK; Riley MJ; Gahan LR; Neves A
    J Biol Inorg Chem; 2008 Jan; 13(1):139-55. PubMed ID: 17938975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for nonbridged coordination of p-nitrophenyl phosphate to the dinuclear Fe(III)-M(II) center in bovine spleen purple acid phosphatase during enzymatic turnover.
    Merkx M; Pinkse MW; Averill BA
    Biochemistry; 1999 Aug; 38(31):9914-25. PubMed ID: 10433698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction mechanism of the Ga(III)Zn(II) derivative of uteroferrin and corresponding biomimetics.
    Smith SJ; Casellato A; Hadler KS; Mitić N; Riley MJ; Bortoluzzi AJ; Szpoganicz B; Schenk G; Neves A; Gahan LR
    J Biol Inorg Chem; 2007 Nov; 12(8):1207-20. PubMed ID: 17701232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases.
    Jarenmark M; Haukka M; Demeshko S; Tuczek F; Zuppiroli L; Meyer F; Nordlander E
    Inorg Chem; 2011 May; 50(9):3866-87. PubMed ID: 21452875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H(2)O(2): a rapid kinetics study.
    Primus JL; Grunenwald S; Hagedoorn PL; Albrecht-Gary AM; Mandon D; Veeger C
    J Am Chem Soc; 2002 Feb; 124(7):1214-21. PubMed ID: 11841289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.
    Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM
    Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.
    Meng L; Ruebush S; D'souza VM; Copik AJ; Tsunasawa S; Holz RC
    Biochemistry; 2002 Jun; 41(23):7199-208. PubMed ID: 12044150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical properties of the diiron core of uteroferrin and its anion complexes.
    Wang DL; Holz RC; David SS; Que L; Stankovich MT
    Biochemistry; 1991 Aug; 30(33):8187-94. PubMed ID: 1868093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase.
    Schenk G; Gahan LR; Carrington LE; Mitic N; Valizadeh M; Hamilton SE; de Jersey J; Guddat LW
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):273-8. PubMed ID: 15625111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron content and molecular weight of uteroferrin and a comparison of its iron and copper forms.
    Buhi WC; Gray WJ; Mansfield EA; Chun PW; Ducsay CA; Bazer FW; Roberts RM
    Biochim Biophys Acta; 1982 Feb; 701(1):32-8. PubMed ID: 7055585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsymmetrical Fe(III)Co(II) and Ga(III)Co(II) complexes as chemical hydrolases: biomimetic models for purple acid phosphatases (PAPs).
    Xavier FR; Neves A; Casellato A; Peralta RA; Bortoluzzi AJ; Szpoganicz B; Severino PC; Terenzi H; Tomkowicz Z; Ostrovsky S; Haase W; Ozarowski A; Krzystek J; Telser J; Schenk G; Gahan LR
    Inorg Chem; 2009 Aug; 48(16):7905-21. PubMed ID: 19603814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The divalent metal ion in the active site of uteroferrin modulates substrate binding and catalysis.
    Mitić N; Hadler KS; Gahan LR; Hengge AC; Schenk G
    J Am Chem Soc; 2010 May; 132(20):7049-54. PubMed ID: 20433174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic studies on the interaction of phosphate with uteroferrin.
    Doi K; Gupta R; Aisen P
    J Biol Chem; 1987 May; 262(15):6982-5. PubMed ID: 3034875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purple acid phosphatase from bovine spleen. Interactions at the active site in relation to the reaction mechanism.
    Dietrich M; Münstermann D; Suerbaum H; Witzel H
    Eur J Biochem; 1991 Jul; 199(1):105-13. PubMed ID: 1648483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group.
    Fernández-Botello A; Operschall BP; Holy A; Moreno V; Sigel H
    Dalton Trans; 2010 Jul; 39(27):6344-54. PubMed ID: 20523923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme-phosphate-fluoride complex as a model for the active enzyme-substrate-hydroxide complex.
    Pinkse MW; Merkx M; Averill BA
    Biochemistry; 1999 Aug; 38(31):9926-36. PubMed ID: 10433699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The binding of molybdate to uteroferrin. Hyperfine interactions of the binuclear center with 95Mo, 1H, and 2H.
    Doi K; McCracken J; Peisach J; Aisen P
    J Biol Chem; 1988 Apr; 263(12):5757-63. PubMed ID: 2833515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen-bonding cavities about metal ions: synthesis, structure, and physical properties for a series of monomeric M-OH complexes derived from water.
    MacBeth CE; Hammes BS; Young VG; Borovik AS
    Inorg Chem; 2001 Aug; 40(18):4733-41. PubMed ID: 11511223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.