These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 12401115)
1. Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Trabalzini L; Paffetti A; Scaloni A; Talamo F; Ferro E; Coratza G; Bovalini L; Lusini P; Martelli P; Santucci A Biochem J; 2003 Feb; 370(Pt 1):35-46. PubMed ID: 12401115 [TBL] [Abstract][Full Text] [Related]
2. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae. Trabalzini L; Paffetti A; Ferro E; Scaloni A; Talamo F; Millucci L; Martelli P; Santucci A Ital J Biochem; 2003 Dec; 52(4):145-53. PubMed ID: 15141481 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation. Hansen R; Pearson SY; Brosnan JM; Meaden PG; Jamieson DJ Appl Microbiol Biotechnol; 2006 Aug; 72(1):116-125. PubMed ID: 16820951 [TBL] [Abstract][Full Text] [Related]
4. Effect of different glucose concentrations on proteome of Saccharomyces cerevisiae. Guidi F; Magherini F; Gamberi T; Borro M; Simmaco M; Modesti A Biochim Biophys Acta; 2010 Jul; 1804(7):1516-25. PubMed ID: 20362699 [TBL] [Abstract][Full Text] [Related]
5. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation. Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469 [TBL] [Abstract][Full Text] [Related]
6. The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. Rossignol T; Kobi D; Jacquet-Gutfreund L; Blondin B J Appl Microbiol; 2009 Jul; 107(1):47-55. PubMed ID: 19245406 [TBL] [Abstract][Full Text] [Related]
7. Proteomics and redox-proteomics of the effects of herbicides on a wild-type wine Saccharomyces cerevisiae strain. Braconi D; Bernardini G; Possenti S; Laschi M; Arena S; Scaloni A; Geminiani M; Sotgiu M; Santucci A J Proteome Res; 2009 Jan; 8(1):256-67. PubMed ID: 19032026 [TBL] [Abstract][Full Text] [Related]
8. Enhanced arginine biosynthesis and lower proteolytic profile as indicators of Saccharomyces cerevisiae stress in stationary phase during fermentation of high sugar grape must: A proteomic evidence. Noti O; Vaudano E; Giuffrida MG; Lamberti C; Cavallarin L; Garcia-Moruno E; Pessione E Food Res Int; 2018 Mar; 105():1011-1018. PubMed ID: 29433191 [TBL] [Abstract][Full Text] [Related]
9. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation. Cheng JS; Zhou X; Ding MZ; Yuan YJ Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749 [TBL] [Abstract][Full Text] [Related]
10. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. Kim IS; Yun HS; Park IS; Sohn HY; Iwahashi H; Jin IN J Biosci Bioeng; 2006 Oct; 102(4):288-96. PubMed ID: 17116574 [TBL] [Abstract][Full Text] [Related]
11. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation. Chen S; Xu Y Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599 [TBL] [Abstract][Full Text] [Related]
12. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771 [TBL] [Abstract][Full Text] [Related]
13. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531 [TBL] [Abstract][Full Text] [Related]
14. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation. García-Ríos E; Querol A; Guillamón JM J Proteomics; 2016 Sep; 146():70-9. PubMed ID: 27343759 [TBL] [Abstract][Full Text] [Related]
15. Impact of CO Porras-Agüera JA; Moreno-García J; García-Martínez T; Moreno J; Mauricio JC Int J Food Microbiol; 2021 Jun; 348():109226. PubMed ID: 33964807 [TBL] [Abstract][Full Text] [Related]
16. Surfome analysis of a wild-type wine Saccharomyces cerevisiae strain. Braconi D; Amato L; Bernardini G; Arena S; Orlandini M; Scaloni A; Santucci A Food Microbiol; 2011 Sep; 28(6):1220-30. PubMed ID: 21645823 [TBL] [Abstract][Full Text] [Related]
17. Two-dimensional protein map of an "ale"-brewing yeast strain: proteome dynamics during fermentation. Kobi D; Zugmeyer S; Potier S; Jaquet-Gutfreund L FEMS Yeast Res; 2004 Dec; 5(3):213-30. PubMed ID: 15556083 [TBL] [Abstract][Full Text] [Related]
18. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Gobbi M; Comitini F; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M Food Microbiol; 2013 Apr; 33(2):271-81. PubMed ID: 23200661 [TBL] [Abstract][Full Text] [Related]
19. Proteomic evolution of a wine yeast during the first hours of fermentation. Salvadó Z; Chiva R; Rodríguez-Vargas S; Rández-Gil F; Mas A; Guillamón JM FEMS Yeast Res; 2008 Nov; 8(7):1137-46. PubMed ID: 18503542 [TBL] [Abstract][Full Text] [Related]
20. Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine. Tosi E; Azzolini M; Guzzo F; Zapparoli G J Appl Microbiol; 2009 Jul; 107(1):210-8. PubMed ID: 19245401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]