These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12401168)

  • 1. Serotonin promotes G(o)-dependent neuronal migration in Caenorhabditis elegans.
    Kindt KS; Tam T; Whiteman S; Schafer WR
    Curr Biol; 2002 Oct; 12(20):1738-47. PubMed ID: 12401168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans.
    Tam T; Mathews E; Snutch TP; Schafer WR
    Dev Biol; 2000 Oct; 226(1):104-17. PubMed ID: 10993677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two RGS proteins that inhibit Galpha(o) and Galpha(q) signaling in C. elegans neurons require a Gbeta(5)-like subunit for function.
    Chase DL; Patikoglou GA; Koelle MR
    Curr Biol; 2001 Feb; 11(4):222-31. PubMed ID: 11250150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans.
    Ségalat L; Elkes DA; Kaplan JM
    Science; 1995 Mar; 267(5204):1648-51. PubMed ID: 7886454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites.
    Nurrish S; Ségalat L; Kaplan JM
    Neuron; 1999 Sep; 24(1):231-42. PubMed ID: 10677040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for RIC-8 (Synembryn) and GOA-1 (G(o)alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans.
    Miller KG; Rand JB
    Genetics; 2000 Dec; 156(4):1649-60. PubMed ID: 11102364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration.
    Josephson MP; Miltner AM; Lundquist EA
    Genetics; 2016 Aug; 203(4):1747-62. PubMed ID: 27225683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin deficiency shortens the duration of forward movement in Caenorhabditis elegans.
    Wakabayashi T; Osada T; Shingai R
    Biosci Biotechnol Biochem; 2005 Sep; 69(9):1767-70. PubMed ID: 16195598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migration of neuronal cells along the anterior-posterior body axis of C. elegans: Wnts are in control.
    Silhankova M; Korswagen HC
    Curr Opin Genet Dev; 2007 Aug; 17(4):320-5. PubMed ID: 17644372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development.
    Qin H; Powell-Coffman JA
    Dev Biol; 2004 Jun; 270(1):64-75. PubMed ID: 15136141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicry of a G protein mutation by pertussis toxin expression in transgenic Caenorhabditis elegans.
    Darby C; Falkow S
    Infect Immun; 2001 Oct; 69(10):6271-5. PubMed ID: 11553570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eat-11 encodes GPB-2, a Gbeta(5) ortholog that interacts with G(o)alpha and G(q)alpha to regulate C. elegans behavior.
    Robatzek M; Niacaris T; Steger K; Avery L; Thomas JH
    Curr Biol; 2001 Feb; 11(4):288-93. PubMed ID: 11250160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MIG-13 controls anteroposterior cell migration by interacting with UNC-71/ADM-1 and SRC-1 in Caenorhabditis elegans.
    Masuda H; Nakamura K; Takata N; Itoh B; Hirose T; Moribe H; Mekada E; Okada M
    FEBS Lett; 2012 Mar; 586(6):740-6. PubMed ID: 22293500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.
    Li Y; Zhao Y; Huang X; Lin X; Guo Y; Wang D; Li C; Wang D
    PLoS One; 2013; 8(11):e77779. PubMed ID: 24223727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptors and other signaling proteins required for serotonin control of locomotion in Caenorhabditis elegans.
    Gürel G; Gustafson MA; Pepper JS; Horvitz HR; Koelle MR
    Genetics; 2012 Dec; 192(4):1359-71. PubMed ID: 23023001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in
    Churgin MA; McCloskey RJ; Peters E; Fang-Yen C
    J Neurosci; 2017 Aug; 37(33):7811-7823. PubMed ID: 28698386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit.
    Josephson MP; Aliani R; Norris ML; Ochs ME; Gujar M; Lundquist EA
    Genetics; 2017 Feb; 205(2):737-748. PubMed ID: 27913619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system.
    Trojanowski NF; Raizen DM; Fang-Yen C
    Sci Rep; 2016 Mar; 6():22940. PubMed ID: 26976078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network.
    Schade MA; Reynolds NK; Dollins CM; Miller KG
    Genetics; 2005 Feb; 169(2):631-49. PubMed ID: 15489510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells.
    Anderson A; Laurenson-Schafer H; Partridge FA; Hodgkin J; McMullan R
    PLoS Pathog; 2013; 9(12):e1003787. PubMed ID: 24348250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.