These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 12401610)

  • 21. General anesthetics selectively modulate glutamatergic and dopaminergic signaling via site-specific phosphorylation in vivo.
    Snyder GL; Galdi S; Hendrick JP; Hemmings HC
    Neuropharmacology; 2007 Oct; 53(5):619-30. PubMed ID: 17826804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. General anesthetic actions on norepinephrine, dopamine, and gamma-aminobutyric acid transporters in stably transfected cells.
    Shahani SK; Lingamaneni R; Hemmings HC
    Anesth Analg; 2002 Oct; 95(4):893-9, table of contents. PubMed ID: 12351264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High D-glucose concentrations increase GABA release but inhibit release of norepinephrine and 5-hydroxytryptamine in rat cerebral cortex.
    Fink K; Göthert M
    Brain Res; 1993 Aug; 618(2):220-6. PubMed ID: 8397048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Presynaptic actions of general anesthetics are responsible for frequency-dependent modification of synaptic transmission in the rat hippocampal CA1.
    Hirota K; Sasaki R; Roth SH; Yamazaki M
    Anesth Analg; 2010 Jun; 110(6):1607-13. PubMed ID: 20435940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presynaptic kappa-opioid and muscarinic receptors inhibit the calcium-dependent component of evoked glutamate release from striatal synaptosomes.
    Rawls SM; McGinty JF; Terrian DM
    J Neurochem; 1999 Sep; 73(3):1058-65. PubMed ID: 10461895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical concentrations of volatile anesthetics reduce depolarization-evoked release of [3H]norepinephrine, but not [3H]acetylcholine, from rat cerebral cortex.
    Bazil CW; Minneman KP
    J Neurochem; 1989 Sep; 53(3):962-5. PubMed ID: 2760627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HIV-1 envelope protein gp120 potentiates NMDA-evoked noradrenaline release by a direct action at rat hippocampal and cortical noradrenergic nerve endings.
    Pittaluga A; Raiteri M
    Eur J Neurosci; 1994 Nov; 6(11):1743-9. PubMed ID: 7874313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Halothane and isoflurane differentially affect the regulation of dopamine and gamma-aminobutyric acid release mediated by presynaptic acetylcholine receptors in the rat striatum.
    Salord F; Keita H; Lecharny JB; Henzel D; Desmonts JM; Mantz J
    Anesthesiology; 1997 Mar; 86(3):632-41. PubMed ID: 9066330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels.
    Ratnakumari L; Vysotskaya TN; Duch DS; Hemmings HC
    Anesthesiology; 2000 Feb; 92(2):529-41. PubMed ID: 10691242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Halothane and isoflurane alter calcium dynamics in rat cerebrocortical synaptosomes.
    Xu F; Sarti P; Zhang J; Blanck TJ
    Anesth Analg; 1998 Sep; 87(3):701-10. PubMed ID: 9728857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different effects of volatile anesthetics and polyhalogenated alkanes on depolarization-evoked glutamate release in rat cortical brain slices.
    Eilers H; Kindler CH; Bickler PE
    Anesth Analg; 1999 May; 88(5):1168-74. PubMed ID: 10320189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nicotinic receptor-evoked hippocampal norepinephrine release is highly sensitive to inhibition by isoflurane.
    Westphalen RI; Gomez RS; Hemmings HC
    Br J Anaesth; 2009 Mar; 102(3):355-60. PubMed ID: 19189985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orexin A decreases ketamine-induced anesthesia time in the rat: the relevance to brain noradrenergic neuronal activity.
    Tose R; Kushikata T; Yoshida H; Kudo M; Furukawa K; Ueno S; Hirota K
    Anesth Analg; 2009 Feb; 108(2):491-5. PubMed ID: 19151277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transmitter glutamate release from isolated nerve terminals: evidence for biphasic release and triggering by localized Ca2+.
    McMahon HT; Nicholls DG
    J Neurochem; 1991 Jan; 56(1):86-94. PubMed ID: 1670958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential interaction of anaesthetics and antiepileptic drugs with neuronal Na+ channels, Ca2+ channels, and GABA(A) receptors.
    Lingamaneni R; Hemmings HC
    Br J Anaesth; 2003 Feb; 90(2):199-211. PubMed ID: 12538378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of intravenous anesthetic agents on glutamate release: a role for GABAA receptor-mediated inhibition.
    Buggy DJ; Nicol B; Rowbotham DJ; Lambert DG
    Anesthesiology; 2000 Apr; 92(4):1067-73. PubMed ID: 10754627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors.
    Wang SJ
    Synapse; 2007 Jun; 61(6):401-11. PubMed ID: 17372967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of extracellular pH reductions on [(3)H]D-aspartate and [(3)H]noradrenaline release by presynaptic nerve terminals isolated from rat cerebral cortex.
    D'Amico M; Samengo I; Martire M
    J Neural Transm (Vienna); 2010 Jan; 117(1):27-34. PubMed ID: 19779800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of presynaptic sodium channels by halothane.
    Ratnakumari L; Hemmings HC
    Anesthesiology; 1998 Apr; 88(4):1043-54. PubMed ID: 9579514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regional differences in the effects of isoflurane on neurotransmitter release.
    Westphalen RI; Kwak NB; Daniels K; Hemmings HC
    Neuropharmacology; 2011 Sep; 61(4):699-706. PubMed ID: 21651920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.