These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 12401795)
1. A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. Belogurov GA; Lahti R J Biol Chem; 2002 Dec; 277(51):49651-4. PubMed ID: 12401795 [TBL] [Abstract][Full Text] [Related]
2. H+-pyrophosphatase of Rhodospirillum rubrum. High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation my mersalyl. Belogurov GA; Turkina MV; Penttinen A; Huopalahti S; Baykov AA; Lahti R J Biol Chem; 2002 Jun; 277(25):22209-14. PubMed ID: 11956221 [TBL] [Abstract][Full Text] [Related]
3. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. Nakanishi Y; Saijo T; Wada Y; Maeshima M J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147 [TBL] [Abstract][Full Text] [Related]
4. Na+-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H+-translocating pyrophosphatases. Luoto HH; Belogurov GA; Baykov AA; Lahti R; Malinen AM J Biol Chem; 2011 Jun; 286(24):21633-42. PubMed ID: 21527638 [TBL] [Abstract][Full Text] [Related]
5. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum. Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429 [TBL] [Abstract][Full Text] [Related]
6. Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity. Belogurov GA; Malinen AM; Turkina MV; Jalonen U; Rytkönen K; Baykov AA; Lahti R Biochemistry; 2005 Feb; 44(6):2088-96. PubMed ID: 15697234 [TBL] [Abstract][Full Text] [Related]
7. Role of the potassium/lysine cationic center in catalysis and functional asymmetry in membrane-bound pyrophosphatases. Artukka E; Luoto HH; Baykov AA; Lahti R; Malinen AM Biochem J; 2018 Mar; 475(6):1141-1158. PubMed ID: 29519958 [TBL] [Abstract][Full Text] [Related]
8. A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Pérez-Castiñeira JR; López-Marqués RL; Losada M; Serrano A FEBS Lett; 2001 May; 496(1):6-11. PubMed ID: 11343697 [TBL] [Abstract][Full Text] [Related]
9. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Lahti R; Pohjanoksa K; Pitkäranta T; Heikinheimo P; Salminen T; Meyer P; Heinonen J Biochemistry; 1990 Jun; 29(24):5761-6. PubMed ID: 1974462 [TBL] [Abstract][Full Text] [Related]
10. Na+-pyrophosphatase: a novel primary sodium pump. Malinen AM; Belogurov GA; Baykov AA; Lahti R Biochemistry; 2007 Jul; 46(30):8872-8. PubMed ID: 17605473 [TBL] [Abstract][Full Text] [Related]
11. The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential. Ros R; Romieu C; Gibrat R; Grignon C J Biol Chem; 1995 Mar; 270(9):4368-74. PubMed ID: 7876200 [TBL] [Abstract][Full Text] [Related]
12. AVP2, a sequence-divergent, K(+)-insensitive H(+)-translocating inorganic pyrophosphatase from Arabidopsis. Drozdowicz YM; Kissinger JC; Rea PA Plant Physiol; 2000 May; 123(1):353-62. PubMed ID: 10806252 [TBL] [Abstract][Full Text] [Related]
13. Expression of functional Streptomyces coelicolor H+-pyrophosphatase and characterization of its molecular properties. Hirono M; Mimura H; Nakanishi Y; Maeshima M J Biochem; 2005 Aug; 138(2):183-91. PubMed ID: 16091593 [TBL] [Abstract][Full Text] [Related]
14. Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi. Hill JE; Scott DA; Luo S; Docampo R Biochem J; 2000 Oct; 351(Pt 1):281-8. PubMed ID: 10998372 [TBL] [Abstract][Full Text] [Related]
15. Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. Mimura H; Nakanishi Y; Hirono M; Maeshima M J Biol Chem; 2004 Aug; 279(33):35106-12. PubMed ID: 15187077 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Lin SM; Tsai JY; Hsiao CD; Huang YT; Chiu CL; Liu MH; Tung JY; Liu TH; Pan RL; Sun YJ Nature; 2012 Mar; 484(7394):399-403. PubMed ID: 22456709 [TBL] [Abstract][Full Text] [Related]
17. Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N,N'-dicyclohexylcarbodiimide. Zhen RG; Kim EJ; Rea PA J Biol Chem; 1997 Aug; 272(35):22340-8. PubMed ID: 9268385 [TBL] [Abstract][Full Text] [Related]
18. Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases. Perez-Castineira JR; Lopez-Marques RL; Villalba JM; Losada M; Serrano A Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15914-9. PubMed ID: 12451180 [TBL] [Abstract][Full Text] [Related]
19. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations. Luoto HH; Nordbo E; Baykov AA; Lahti R; Malinen AM J Biol Chem; 2013 Dec; 288(49):35489-99. PubMed ID: 24158447 [TBL] [Abstract][Full Text] [Related]