BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12401795)

  • 21. Evolutionarily divergent, Na+-regulated H+-transporting membrane-bound pyrophosphatases.
    Luoto HH; Nordbo E; Malinen AM; Baykov AA; Lahti R
    Biochem J; 2015 Apr; 467(2):281-91. PubMed ID: 25662511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.
    Hsiao YY; Van RC; Hung SH; Lin HH; Pan RL
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):190-9. PubMed ID: 14871497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+.
    Luoto HH; Baykov AA; Lahti R; Malinen AM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1255-60. PubMed ID: 23297210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase.
    Lee CH; Chen YW; Huang YT; Pan YJ; Lee CH; Lin SM; Huang LK; Lo YY; Huang YF; Hsu YD; Yen SC; Hwang JK; Pan RL
    J Membr Biol; 2013 Dec; 246(12):959-66. PubMed ID: 24121627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vacuolar proton-pumping pyrophosphatase in Beta vulgaris shows vectorial activation by potassium.
    Davies JM; Rea PA; Sanders D
    FEBS Lett; 1991 Jan; 278(1):66-8. PubMed ID: 1847114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic characterization of the hydrolytic activity of the H+-pyrophosphatase of Rhodospirillum rubrum in membrane-bound and isolated states.
    Baykov AA; Sergina NV; Evtushenko OA; Dubnova EB
    Eur J Biochem; 1996 Feb; 236(1):121-7. PubMed ID: 8617255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inorganic pyrophosphatase in the roundworm Ascaris and its role in the development and molting process of the larval stage parasites.
    Islam MK; Miyoshi T; Kasuga-Aoki H; Isobe T; Arakawa T; Matsumoto Y; Tsuji N
    Eur J Biochem; 2003 Jul; 270(13):2814-26. PubMed ID: 12823552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase.
    Davies JM; Poole RJ; Rea PA; Sanders D
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11701-5. PubMed ID: 1334545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chimeric inorganic pyrophosphatase derived from Escherichia coli and Thermus thermophilus has an increased thermostability.
    Satoh T; Takahashi Y; Oshida N; Shimizu A; Shinoda H; Watanabe M; Samejima T
    Biochemistry; 1999 Feb; 38(5):1531-6. PubMed ID: 9931019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstitution of transport function of vacuolar H(+)-translocating inorganic pyrophosphatase.
    Britten CJ; Zhen RG; Kim EJ; Rea PA
    J Biol Chem; 1992 Oct; 267(30):21850-5. PubMed ID: 1328246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps.
    Drozdowicz YM; Lu YP; Patel V; Fitz-Gibbon S; Miller JH; Rea PA
    FEBS Lett; 1999 Nov; 460(3):505-12. PubMed ID: 10556526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presence of a plant-like proton-translocating pyrophosphatase in a scuticociliate parasite and its role as a possible drug target.
    Mallo N; Lamas J; Piazzon C; Leiro JM
    Parasitology; 2015 Mar; 142(3):449-62. PubMed ID: 25118804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A plant-like vacuolar H(+)-pyrophosphatase in Plasmodium falciparum.
    Luo S; Marchesini N; Moreno SN; Docampo R
    FEBS Lett; 1999 Oct; 460(2):217-20. PubMed ID: 10544238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for the reversibility of proton pyrophosphatase.
    Regmi KC; Pizzio GA; Gaxiola RA
    Plant Signal Behav; 2016 Oct; 11(10):e1231294. PubMed ID: 27611445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase.
    Yang SJ; Jiang SS; Hsiao YY; Van RC; Pan YJ; Pan RL
    Biochim Biophys Acta; 2004 Jun; 1656(2-3):88-95. PubMed ID: 15178470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii.
    Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA
    Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of a conserved domain in the eremophyte H+-PPase family.
    Wang Y; Jin S; Wang M; Zhu L; Zhang X
    PLoS One; 2013; 8(7):e70099. PubMed ID: 23922918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: evidence for a new family of enzymes.
    Shintani T; Uchiumi T; Yonezawa T; Salminen A; Baykov AA; Lahti R; Hachimori A
    FEBS Lett; 1998 Nov; 439(3):263-6. PubMed ID: 9845334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of tyrosine residue in the inhibition of plant vacuolar H(+)-pyrophosphatase by tetranitromethane.
    Yang SJ; Jiang SS; Tzeng CM; Kuo SY; Hung SH; Pan RL
    Biochim Biophys Acta; 1996 May; 1294(1):89-97. PubMed ID: 8639720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential regulation of vacuolar H+-ATPase and H+-PPase in Cucumis sativus roots by zinc and nickel.
    Kabała K; Janicka-Russak M
    Plant Sci; 2011 Mar; 180(3):531-9. PubMed ID: 21421401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.