These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 12402320)
1. Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains. Gerigk M; Bujnicki R; Ganpo-Nkwenkwa E; Bongaerts J; Sprenger G; Takors R Biotechnol Bioeng; 2002 Dec; 80(7):746-54. PubMed ID: 12402320 [TBL] [Abstract][Full Text] [Related]
2. Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Zhou H; Liao X; Wang T; Du G; Chen J Bioresour Technol; 2010 Jun; 101(11):4151-6. PubMed ID: 20137911 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli. Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989 [TBL] [Abstract][Full Text] [Related]
4. Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Rüffer N; Heidersdorf U; Kretzers I; Sprenger GA; Raeven L; Takors R Bioprocess Biosyst Eng; 2004 Jul; 26(4):239-48. PubMed ID: 15045576 [TBL] [Abstract][Full Text] [Related]
5. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Oldiges M; Kunze M; Degenring D; Sprenger GA; Takors R Biotechnol Prog; 2004; 20(6):1623-33. PubMed ID: 15575692 [TBL] [Abstract][Full Text] [Related]
6. Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Gerigk MR; Maass D; Kreutzer A; Sprenger G; Bongaerts J; Wubbolts M; Takors R Bioprocess Biosyst Eng; 2002 Apr; 25(1):43-52. PubMed ID: 14505019 [TBL] [Abstract][Full Text] [Related]
7. Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale L-phenylalanine production. Takors R Biotechnol Prog; 2004; 20(1):57-64. PubMed ID: 14763824 [TBL] [Abstract][Full Text] [Related]
8. Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis. Zhang C; Kang Z; Zhang J; Du G; Chen J; Yu X FEMS Microbiol Lett; 2014 Apr; 353(1):11-8. PubMed ID: 24517515 [TBL] [Abstract][Full Text] [Related]
9. Production of tyrosine from sucrose or glucose achieved by rapid genetic changes to phenylalanine-producing Escherichia coli strains. Olson MM; Templeton LJ; Suh W; Youderian P; Sariaslani FS; Gatenby AA; Van Dyk TK Appl Microbiol Biotechnol; 2007 Apr; 74(5):1031-40. PubMed ID: 17216463 [TBL] [Abstract][Full Text] [Related]
10. Serial 13C-based flux analysis of an L-phenylalanine-producing E. coli strain using the sensor reactor. Wahl A; El Massaoudi M; Schipper D; Wiechert W; Takors R Biotechnol Prog; 2004; 20(3):706-14. PubMed ID: 15176872 [TBL] [Abstract][Full Text] [Related]
11. L-tyrosine production by deregulated strains of Escherichia coli. Lütke-Eversloh T; Stephanopoulos G Appl Microbiol Biotechnol; 2007 May; 75(1):103-10. PubMed ID: 17221195 [TBL] [Abstract][Full Text] [Related]
12. Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Escherichia coli. Schmitz M; Hirsch E; Bongaerts J; Takors R Biotechnol Prog; 2002; 18(5):935-41. PubMed ID: 12363343 [TBL] [Abstract][Full Text] [Related]
13. Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Zelić B; Gostović S; Vuorilehto K; Vasić-Racki D; Takors R Biotechnol Bioeng; 2004 Mar; 85(6):638-46. PubMed ID: 14966805 [TBL] [Abstract][Full Text] [Related]
14. Introduction of a stress-responsive gene, yggG, enhances the yield of L-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli. Ojima Y; Komaki M; Nishioka M; Iwatani S; Tsujimoto N; Taya M Biotechnol Lett; 2009 Apr; 31(4):525-30. PubMed ID: 19125225 [TBL] [Abstract][Full Text] [Related]
16. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy]. Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Wu WB; Guo XL; Zhang ML; Huang QG; Qi F; Huang JZ Biotechnol Appl Biochem; 2018 May; 65(3):476-483. PubMed ID: 28872702 [TBL] [Abstract][Full Text] [Related]
18. L-tyrosine production by recombinant Escherichia coli: fermentation optimization and recovery. Patnaik R; Zolandz RR; Green DA; Kraynie DF Biotechnol Bioeng; 2008 Mar; 99(4):741-52. PubMed ID: 18069696 [TBL] [Abstract][Full Text] [Related]
19. Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli. Faulkner E; Barrett M; Okor S; Kieran P; Casey E; Paradisi F; Engel P; Glennon B Biotechnol Prog; 2006; 22(3):889-97. PubMed ID: 16739976 [TBL] [Abstract][Full Text] [Related]
20. Efficient production of 2-deoxy-scyllo-inosose from d-glucose by metabolically engineered recombinant Escherichia coli. Kogure T; Wakisaka N; Takaku H; Takagi M J Biotechnol; 2007 May; 129(3):502-9. PubMed ID: 17368605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]