BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 12402364)

  • 1. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S; Chan HS
    Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of three-body hydrophobic interactions: potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity.
    Moghaddam MS; Shimizu S; Chan HS
    J Am Chem Soc; 2005 Jan; 127(1):303-16. PubMed ID: 15631480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins.
    Shimizu S; Chan HS
    Proteins; 2002 Jul; 48(1):15-30. PubMed ID: 12012334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of urea and trimethylamine-N-oxide on hydrophobic interactions.
    Paul S; Patey GN
    J Phys Chem B; 2007 Jul; 111(28):7932-3. PubMed ID: 17580863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How hydrophobic hydration responds to solute size and attractions: Theory and simulations.
    Athawale MV; Jamadagni SN; Garde S
    J Chem Phys; 2009 Sep; 131(11):115102. PubMed ID: 19778151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic and ionic interactions in nanosized water droplets.
    Vaitheeswaran S; Thirumalai D
    J Am Chem Soc; 2006 Oct; 128(41):13490-6. PubMed ID: 17031962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics.
    Beck DA; Bennion BJ; Alonso DO; Daggett V
    Methods Enzymol; 2007; 428():373-96. PubMed ID: 17875430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the salt-induced stabilization of pair and many-body hydrophobic interactions.
    Ghosh T; Kalra A; Garde S
    J Phys Chem B; 2005 Jan; 109(1):642-51. PubMed ID: 16851057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of mean force of hydrophobic association: dependence on solute size.
    Sobolewski E; Makowski M; Czaplewski C; Liwo A; OƂdziej S; Scheraga HA
    J Phys Chem B; 2007 Sep; 111(36):10765-74. PubMed ID: 17713937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic interactions between methane and a nanoscopic pocket: three dimensional distribution of potential of mean force revealed by computer simulations.
    Setny P
    J Chem Phys; 2008 Mar; 128(12):125105. PubMed ID: 18376980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular origin of anticooperativity in hydrophobic association.
    Czaplewski C; Liwo A; Ripoll DR; Scheraga HA
    J Phys Chem B; 2005 Apr; 109(16):8108-19. PubMed ID: 16851948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the local-bulk partitioning and competitive binding models to interpret preferential interactions of glycine betaine and urea with protein surface.
    Felitsky DJ; Record MT
    Biochemistry; 2004 Jul; 43(28):9276-88. PubMed ID: 15248785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-linear effects of temperature and urea on the thermodynamics and kinetics of folding and unfolding of hisactophilin.
    Wong HJ; Stathopulos PB; Bonner JM; Sawyer M; Meiering EM
    J Mol Biol; 2004 Dec; 344(4):1089-107. PubMed ID: 15544814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
    O'Brien EP; Dima RI; Brooks B; Thirumalai D
    J Am Chem Soc; 2007 Jun; 129(23):7346-53. PubMed ID: 17503819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein cold denaturation as seen from the solvent.
    Davidovic M; Mattea C; Qvist J; Halle B
    J Am Chem Soc; 2009 Jan; 131(3):1025-36. PubMed ID: 19115852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The three states of globular proteins: acid denaturation.
    Alonso DO; Dill KA; Stigter D
    Biopolymers; 1991 Nov; 31(13):1631-49. PubMed ID: 1814509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics study on hydrophobic effects in aqueous urea solutions.
    Ikeguchi M; Nakamura S; Shimizu K
    J Am Chem Soc; 2001 Jan; 123(4):677-82. PubMed ID: 11456580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.