These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12402507)

  • 1. Rhodopsin and retinitis pigmentosa: shedding light on structure and function.
    Stojanovic A; Hwa J
    Recept Channels; 2002; 8(1):33-50. PubMed ID: 12402507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The eye photoreceptor protein rhodopsin. Structural implications for retinal disease.
    Garriga P; Manyosa J
    FEBS Lett; 2002 Sep; 528(1-3):17-22. PubMed ID: 12297272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment.
    Sung CH; Makino C; Baylor D; Nathans J
    J Neurosci; 1994 Oct; 14(10):5818-33. PubMed ID: 7523628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular biology of light transduction by the Mammalian photoreceptor, rhodopsin.
    Khorana HG
    J Biomol Struct Dyn; 2000; 17 Suppl 1():1-16. PubMed ID: 22607401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylation of rhodopsin is necessary for its stability and incorporation into photoreceptor outer segment discs.
    Murray AR; Vuong L; Brobst D; Fliesler SJ; Peachey NS; Gorbatyuk MS; Naash MI; Al-Ubaidi MR
    Hum Mol Genet; 2015 May; 24(10):2709-23. PubMed ID: 25637522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray structure breakthroughs in the GPCR transmembrane region.
    Topiol S; Sabio M
    Biochem Pharmacol; 2009 Jul; 78(1):11-20. PubMed ID: 19447219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa.
    Dryja TP; McGee TL; Reichel E; Hahn LB; Cowley GS; Yandell DW; Sandberg MA; Berson EL
    Nature; 1990 Jan; 343(6256):364-6. PubMed ID: 2137202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docosahexaenoic acid phospholipid differentially modulates the conformation of G90V and N55K rhodopsin mutants associated with retinitis pigmentosa.
    Dong X; Herrera-Hernández MG; Ramon E; Garriga P
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):975-981. PubMed ID: 28212859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin.
    Trabanino RJ; Hall SE; Vaidehi N; Floriano WB; Kam VW; Goddard WA
    Biophys J; 2004 Apr; 86(4):1904-21. PubMed ID: 15041637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G protein-coupled receptor rhodopsin: a prospectus.
    Filipek S; Stenkamp RE; Teller DC; Palczewski K
    Annu Rev Physiol; 2003; 65():851-79. PubMed ID: 12471166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa.
    Rosenfeld PJ; Cowley GS; McGee TL; Sandberg MA; Berson EL; Dryja TP
    Nat Genet; 1992 Jun; 1(3):209-13. PubMed ID: 1303237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical analysis of a rhodopsin photoactivatable GFP fusion as a model of G-protein coupled receptor transport.
    Sammons JD; Gross AK
    Vision Res; 2013 Dec; 93():43-8. PubMed ID: 24140958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Sodium Valproate on the Conformational Stability of the Visual G Protein-Coupled Receptor Rhodopsin.
    Razzaghi N; Fernandez-Gonzalez P; Mas-Sanchez A; Vila-Julià G; Perez JJ; Garriga P
    Molecules; 2021 May; 26(10):. PubMed ID: 34069614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy.
    Mendes HF; van der Spuy J; Chapple JP; Cheetham ME
    Trends Mol Med; 2005 Apr; 11(4):177-85. PubMed ID: 15823756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin: the functional significance of asn-linked glycosylation and other post-translational modifications.
    Murray AR; Fliesler SJ; Al-Ubaidi MR
    Ophthalmic Genet; 2009 Sep; 30(3):109-20. PubMed ID: 19941415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa.
    Bogéa TH; Wen RH; Moritz OL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activating mutations of rhodopsin and other G protein-coupled receptors.
    Rao VR; Oprian DD
    Annu Rev Biophys Biomol Struct; 1996; 25():287-314. PubMed ID: 8800472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin: structure, signal transduction and oligomerisation.
    Morris MB; Dastmalchi S; Church WB
    Int J Biochem Cell Biol; 2009 Apr; 41(4):721-4. PubMed ID: 18692154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of rhodopsin: implications for vision and beyond.
    Okada T; Palczewski K
    Curr Opin Struct Biol; 2001 Aug; 11(4):420-6. PubMed ID: 11495733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.