BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 12403274)

  • 1. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved fluorescence of tryptophans in yeast hexokinase-PI: effect of subunit dimerization and ligand binding.
    Maity H; Maiti NC; Jarori GK
    J Photochem Photobiol B; 2000 Mar; 55(1):20-6. PubMed ID: 10877063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change.
    Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodotorula aurantiaca penicillin V acylase: active site characterization and fluorometric studies.
    Kumar A; Gowda NM; Gaikwad S; Pundle A
    J Photochem Photobiol B; 2009 Nov; 97(2):109-16. PubMed ID: 19819716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor-induced changes in the intrinsic fluorescence of human cyclooxygenase-2.
    Houtzager V; Ouellet M; Falgueyret JP; Passmore LA; Bayly C; Percival MD
    Biochemistry; 1996 Aug; 35(33):10974-84. PubMed ID: 8718891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide.
    Feldman I; Norton GE
    Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence studies of spectrin and its subunits.
    Subbarao NK; MacDonald RC
    Cell Motil Cytoskeleton; 1994; 29(1):72-81. PubMed ID: 7820859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide-quenching of Rhizomucor miehei lipase.
    Stobiecka A
    J Photochem Photobiol B; 2005 Jul; 80(1):9-18. PubMed ID: 15963433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan fluorescence of the lux-specific Vibrio harveyi acyl-ACP thioesterase and its tryptophan mutants: structural properties and ligand-induced conformational change.
    Li J; Szittner R; Meighen EA
    Biochemistry; 1998 Nov; 37(46):16130-8. PubMed ID: 9819205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the tryptophan fluorescence and hydrodynamic properties of rat DNA polymerase beta.
    Kim SJ; Lewis MS; Knutson JR; Porter DK; Kumar A; Wilson SH
    J Mol Biol; 1994 Nov; 244(2):224-35. PubMed ID: 7966332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.
    Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM
    Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].
    Vermishian IG; Sharoian SG; Antonian AA; Grigorian NA; Mardanian SS; Khoetsian AV; Markarian ShA
    Biofizika; 2008; 53(2):213-21. PubMed ID: 18543763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan exposure and accessibility in the chitooligosaccharide-specific phloem exudate lectin from pumpkin (Cucurbita maxima). A fluorescence study.
    Narahari A; Swamy MJ
    J Photochem Photobiol B; 2009 Oct; 97(1):40-7. PubMed ID: 19700341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase.
    Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M
    Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and dynamics of partially folded actin.
    Turoverov KK; Biktashev AG; Khaitlina SY; Kuznetsova IM
    Biochemistry; 1999 May; 38(19):6261-9. PubMed ID: 10320355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence quenching and time-resolved fluorescence studies on Trichosanthes dioica seed lectin.
    Sultan NA; Swamy MJ
    J Photochem Photobiol B; 2005 Aug; 80(2):93-100. PubMed ID: 16038808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myb-DNA recognition: role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb.
    Zargarian L; Le Tilly V; Jamin N; Chaffotte A; Gabrielsen OS; Toma F; Alpert B
    Biochemistry; 1999 Feb; 38(6):1921-9. PubMed ID: 10026273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence spectroscopic studies on tryptophan at the saccharide-binding site of castor bean hemagglutinin.
    Yamasaki N; Absar N; Funatsu G
    J Mol Recognit; 1989 Apr; 1(4):153-7. PubMed ID: 2631862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.