BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 12403274)

  • 21. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: assessment of the active site.
    Nath D; Rao M
    Biochem Biophys Res Commun; 1998 Aug; 249(1):207-12. PubMed ID: 9705858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Steady-state and time-resolved fluorescence studies of the intestinal fatty acid binding protein.
    Chattopadhyay K; Frieden C
    Proteins; 2006 May; 63(2):327-35. PubMed ID: 16421929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching.
    Pan RJ; Cherry RJ
    Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
    Guixé V; Rodríguez PH; Babul J
    Biochemistry; 1998 Sep; 37(38):13269-75. PubMed ID: 9748334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein fluorescence quenching by small molecules: protein penetration versus solvent exposure.
    Calhoun DB; Vanderkooi JM; Holtom GR; Englander SW
    Proteins; 1986 Oct; 1(2):109-15. PubMed ID: 3130621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence quenching as an indicator for the exposure of tryptophyl residues in Streptomyces subtilisin inhibitor.
    Komiyama T; Miwa M
    J Biochem; 1980 Apr; 87(4):1029-36. PubMed ID: 6993454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunosuppressor binding to the immunophilin FKBP59 affects the local structural dynamics of a surface beta-strand: time-resolved fluorescence study.
    Rouviere N; Vincent M; Craescu CT; Gallay J
    Biochemistry; 1997 Jun; 36(24):7339-52. PubMed ID: 9200682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic activation of human glucokinase by substrate binding: residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions.
    Molnes J; Bjørkhaug L; Søvik O; Njølstad PR; Flatmark T
    FEBS J; 2008 May; 275(10):2467-81. PubMed ID: 18397317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of urea denaturation on tryptophan fluorescence and nucleotide binding on tubulin studied by fluorescence and NMR spectroscopic methods.
    Kuchroo K; Maity H; Kasturi SR
    Physiol Chem Phys Med NMR; 2001; 33(2):139-51. PubMed ID: 12002688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intrinsically disordered structure of Bacillus pasteurii UreG as revealed by steady-state and time-resolved fluorescence spectroscopy.
    Neyroz P; Zambelli B; Ciurli S
    Biochemistry; 2006 Jul; 45(29):8918-30. PubMed ID: 16846235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational changes of maize and wheat NADP-malic enzyme studied by quenching of protein native fluorescence.
    Spampinato CP; Ferreyra ML; Andreo CS
    Int J Biol Macromol; 2007 Jun; 41(1):64-71. PubMed ID: 17292466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification.
    Molla AR; Maity SS; Ghosh S; Mandal DK
    Biochimie; 2009 Jul; 91(7):857-67. PubMed ID: 19383525
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence.
    Tyagi NK; Goyal P; Kumar A; Pandey D; Siess W; Kinne RK
    Biochemistry; 2005 Nov; 44(47):15514-24. PubMed ID: 16300400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence quenching of buried Trp residues by acrylamide does not require penetration of the protein fold.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jan; 114(2):1089-93. PubMed ID: 19924836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach.
    Kelkar DA; Chattopadhyay A; Chakrabarti A; Bhattacharyya M
    Biopolymers; 2005 Apr; 77(6):325-34. PubMed ID: 15648086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping the suramin-binding sites of human neutrophil elastase: investigation by fluorescence resonance energy transfer and molecular modeling.
    Mély Y; Cadène M; Sylte I; Bieth JG
    Biochemistry; 1997 Dec; 36(50):15624-31. PubMed ID: 9398290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study of tryptophan fluorescence quenching of bifunctional alginate lyase from a marine bacterium Pseudoalteromonas sp. strain No. 272 by acrylamide.
    Iwamoto Y; Hidaka H; Oda T; Muramatsu T
    Biosci Biotechnol Biochem; 2003 Sep; 67(9):1990-2. PubMed ID: 14519987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fluorescence study of Tn10-encoded tet repressor.
    Wasylewski Z; Kaszycki P; Drwiega M
    J Protein Chem; 1996 Jan; 15(1):45-58. PubMed ID: 8838589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tryptophan fluorescence quenching in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1993 Nov; 48(1):49-59. PubMed ID: 8257767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.