BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12403466)

  • 21. Splicing functions and global dependency on fission yeast slu7 reveal diversity in spliceosome assembly.
    Banerjee S; Khandelia P; Melangath G; Bashir S; Nagampalli V; Vijayraghavan U
    Mol Cell Biol; 2013 Aug; 33(16):3125-36. PubMed ID: 23754748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Helicases involved in splicing from malaria parasite Plasmodium falciparum.
    Tuteja R
    Parasitol Int; 2011 Dec; 60(4):335-40. PubMed ID: 21996352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae.
    Stevens SW; Barta I; Ge HY; Moore RE; Young MK; Lee TD; Abelson J
    RNA; 2001 Nov; 7(11):1543-53. PubMed ID: 11720284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and interactions of the first three RNA recognition motifs of splicing factor prp24.
    Bae E; Reiter NJ; Bingman CA; Kwan SS; Lee D; Phillips GN; Butcher SE; Brow DA
    J Mol Biol; 2007 Apr; 367(5):1447-58. PubMed ID: 17320109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional and structural characterization of the prp3 binding domain of the yeast prp4 splicing factor.
    Ayadi L; Callebaut I; Saguez C; Villa T; Mornon JP; Banroques J
    J Mol Biol; 1998 Dec; 284(3):673-87. PubMed ID: 9826507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human MFAP1 is a cryptic ortholog of the Saccharomyces cerevisiae Spp381 splicing factor.
    Ulrich AK; Wahl MC
    BMC Evol Biol; 2017 Mar; 17(1):91. PubMed ID: 28335716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conserved Lsm-interaction motif in Prp24 required for efficient U4/U6 di-snRNP formation.
    Rader SD; Guthrie C
    RNA; 2002 Nov; 8(11):1378-92. PubMed ID: 12458792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubiquitin binding by a variant Jab1/MPN domain in the essential pre-mRNA splicing factor Prp8p.
    Bellare P; Kutach AK; Rines AK; Guthrie C; Sontheimer EJ
    RNA; 2006 Feb; 12(2):292-302. PubMed ID: 16428608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of a yeast step II catalytically activated spliceosome.
    Yan C; Wan R; Bai R; Huang G; Shi Y
    Science; 2017 Jan; 355(6321):149-155. PubMed ID: 27980089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast ortholog of the Drosophila crooked neck protein promotes spliceosome assembly through stable U4/U6.U5 snRNP addition.
    Chung S; McLean MR; Rymond BC
    RNA; 1999 Aug; 5(8):1042-54. PubMed ID: 10445879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conservation of functional domains involved in RNA binding and protein-protein interactions in human and Saccharomyces cerevisiae pre-mRNA splicing factor SF1.
    Rain JC; Rafi Z; Rhani Z; Legrain P; Krämer A
    RNA; 1998 May; 4(5):551-65. PubMed ID: 9582097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple protein-protein interactions converging on the Prp38 protein during activation of the human spliceosome.
    Schütze T; Ulrich AK; Apelt L; Will CL; Bartlick N; Seeger M; Weber G; Lührmann R; Stelzl U; Wahl MC
    RNA; 2016 Feb; 22(2):265-77. PubMed ID: 26673105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates.
    Gahura O; Abrhámová K; Skruzný M; Valentová A; Munzarová V; Folk P; Půta F
    J Cell Biochem; 2009 Jan; 106(1):139-51. PubMed ID: 19016306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation.
    Absmeier E; Wollenhaupt J; Mozaffari-Jovin S; Becke C; Lee CT; Preussner M; Heyd F; Urlaub H; Lührmann R; Santos KF; Wahl MC
    Genes Dev; 2015 Dec; 29(24):2576-87. PubMed ID: 26637280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CUS1, a suppressor of cold-sensitive U2 snRNA mutations, is a novel yeast splicing factor homologous to human SAP 145.
    Wells SE; Neville M; Haynes M; Wang J; Igel H; Ares M
    Genes Dev; 1996 Jan; 10(2):220-32. PubMed ID: 8566755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for conformational equilibrium of the catalytic spliceosome.
    Wilkinson ME; Fica SM; Galej WP; Nagai K
    Mol Cell; 2021 Apr; 81(7):1439-1452.e9. PubMed ID: 33705709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Six novel genes necessary for pre-mRNA splicing in Saccharomyces cerevisiae.
    Maddock JR; Roy J; Woolford JL
    Nucleic Acids Res; 1996 Mar; 24(6):1037-44. PubMed ID: 8604335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability.
    Mazroui R; Puoti A; Krämer A
    RNA; 1999 Dec; 5(12):1615-31. PubMed ID: 10606272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution.
    Wan R; Yan C; Bai R; Huang G; Shi Y
    Science; 2016 Aug; 353(6302):895-904. PubMed ID: 27445308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-function analysis and genetic interactions of the SmG, SmE, and SmF subunits of the yeast Sm protein ring.
    Schwer B; Kruchten J; Shuman S
    RNA; 2016 Sep; 22(9):1320-8. PubMed ID: 27417296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.