BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12403469)

  • 41. Evidence for common machinery utilized by the early and late RNA localization pathways in Xenopus oocytes.
    Choo S; Heinrich B; Betley JN; Chen Z; Deshler JO
    Dev Biol; 2005 Feb; 278(1):103-17. PubMed ID: 15649464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visualizing RNA localization in Xenopus oocytes.
    Gagnon JA; Mowry KL
    J Vis Exp; 2010 Jan; (35):. PubMed ID: 20075839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytes.
    Claussen M; Horvay K; Pieler T
    Development; 2004 Sep; 131(17):4263-73. PubMed ID: 15294863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conserved and clustered RNA recognition sequences are a critical feature of signals directing RNA localization in Xenopus oocytes.
    Lewis RA; Kress TL; Cote CA; Gautreau D; Rokop ME; Mowry KL
    Mech Dev; 2004 Jan; 121(1):101-9. PubMed ID: 14706704
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA localization in Xenopus oocytes uses a core group of trans-acting factors irrespective of destination.
    Snedden DD; Bertke MM; Vernon D; Huber PW
    RNA; 2013 Jul; 19(7):889-95. PubMed ID: 23645708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species.
    Claußen M; Lingner T; Pommerenke C; Opitz L; Salinas G; Pieler T
    Mol Biol Cell; 2015 Nov; 26(21):3777-87. PubMed ID: 26337391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA transport to the vegetal cortex of Xenopus oocytes.
    Zhou Y; King ML
    Dev Biol; 1996 Oct; 179(1):173-83. PubMed ID: 8873762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A consensus RNA signal that directs germ layer determinants to the vegetal cortex of Xenopus oocytes.
    Bubunenko M; Kress TL; Vempati UD; Mowry KL; King ML
    Dev Biol; 2002 Aug; 248(1):82-92. PubMed ID: 12142022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polarized distribution of mRNAs encoding a putative LDL receptor adaptor protein, xARH (autosomal recessive hypercholesterolemia) in Xenopus oocytes.
    Zhou Y; Zhang J; King ML
    Mech Dev; 2004 Oct; 121(10):1249-58. PubMed ID: 15327785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains.
    Wächter K; Köhn M; Stöhr N; Hüttelmaier S
    Biol Chem; 2013 Aug; 394(8):1077-90. PubMed ID: 23640942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene.
    Wall NA; Craig EJ; Labosky PA; Kessler DS
    Dev Biol; 2000 Nov; 227(2):495-509. PubMed ID: 11071769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recognition of RNA branch point sequences by the KH domain of splicing factor 1 (mammalian branch point binding protein) in a splicing factor complex.
    Peled-Zehavi H; Berglund JA; Rosbash M; Frankel AD
    Mol Cell Biol; 2001 Aug; 21(15):5232-41. PubMed ID: 11438677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Xenopus poly (A) binding protein maternal RNA is localized during oogenesis and associated with large complexes in blastula.
    Schroeder KE; Yost HJ
    Dev Genet; 1996; 19(3):268-76. PubMed ID: 8952069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct contributions of KH domains to substrate binding affinity of Drosophila P-element somatic inhibitor protein.
    Chmiel NH; Rio DC; Doudna JA
    RNA; 2006 Feb; 12(2):283-91. PubMed ID: 16428607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polarizing genetic information in the egg: RNA localization in the frog oocyte.
    King ML; Zhou Y; Bubunenko M
    Bioessays; 1999 Jul; 21(7):546-57. PubMed ID: 10472182
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A family of IGF-II mRNA binding proteins (IMP) involved in RNA trafficking.
    Nielsen FC; Nielsen J; Christiansen J
    Scand J Clin Lab Invest Suppl; 2001; 234():93-9. PubMed ID: 11713986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains.
    Dejgaard K; Leffers H
    Eur J Biochem; 1996 Oct; 241(2):425-31. PubMed ID: 8917439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains.
    Lewis HA; Chen H; Edo C; Buckanovich RJ; Yang YY; Musunuru K; Zhong R; Darnell RB; Burley SK
    Structure; 1999 Feb; 7(2):191-203. PubMed ID: 10368286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of new localized RNAs in the Xenopus oocyte by differential display PCR.
    Hudson JW; Alarcón VB; Elinson RP
    Dev Genet; 1996; 19(3):190-8. PubMed ID: 8952061
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA.
    Yisraeli JK; Sokol S; Melton DA
    Development; 1990 Feb; 108(2):289-98. PubMed ID: 2351071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.