These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 12403595)
1. Dopamine transport into a single cell in a picoliter vial. Troyer KP; Wightman RM Anal Chem; 2002 Oct; 74(20):5370-5. PubMed ID: 12403595 [TBL] [Abstract][Full Text] [Related]
2. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Bath BD; Michael DJ; Trafton BJ; Joseph JD; Runnels PL; Wightman RM Anal Chem; 2000 Dec; 72(24):5994-6002. PubMed ID: 11140768 [TBL] [Abstract][Full Text] [Related]
3. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Venton BJ; Cao Q Analyst; 2020 Feb; 145(4):1158-1168. PubMed ID: 31922176 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties. Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206 [TBL] [Abstract][Full Text] [Related]
5. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy. Rivera-Serrano N; Pagan M; Colón-Rodríguez J; Fuster C; Vélez R; Almodovar-Faria J; Jiménez-Rivera C; Cunci L Anal Chem; 2018 Feb; 90(3):2293-2301. PubMed ID: 29260558 [TBL] [Abstract][Full Text] [Related]
6. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Swamy BE; Venton BJ Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262 [TBL] [Abstract][Full Text] [Related]
7. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Roberts JG; Moody BP; McCarty GS; Sombers LA Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750 [TBL] [Abstract][Full Text] [Related]
9. Dependence of dopamine calibration factors on media Ca2+ and Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry. Kume-Kick J; Rice ME J Neurosci Methods; 1998 Oct; 84(1-2):55-62. PubMed ID: 9821634 [TBL] [Abstract][Full Text] [Related]
10. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Hermans A; Seipel AT; Miller CE; Wightman RM Langmuir; 2006 Feb; 22(5):1964-9. PubMed ID: 16489775 [TBL] [Abstract][Full Text] [Related]
11. Monitoring dopamine release from single living vesicles with nanoelectrodes. Wu WZ; Huang WH; Wang W; Wang ZL; Cheng JK; Xu T; Zhang RY; Chen Y; Liu J J Am Chem Soc; 2005 Jun; 127(25):8914-5. PubMed ID: 15969544 [TBL] [Abstract][Full Text] [Related]
13. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. Burrell MH; Atcherley CW; Heien ML; Lipski J ACS Chem Neurosci; 2015 Nov; 6(11):1802-12. PubMed ID: 26322962 [TBL] [Abstract][Full Text] [Related]
14. 3D carbon nanofiber microelectrode arrays fabricated by plasma-assisted pyrolysis to enhance sensitivity and stability of real-time dopamine detection. Yi W; Yang Y; Hashemi P; Cheng MM Biomed Microdevices; 2016 Dec; 18(6):112. PubMed ID: 27900618 [TBL] [Abstract][Full Text] [Related]