These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12403634)

  • 21. The D-helix in myoglobin and in the beta subunit of hemoglobin is required for the retention of heme.
    Whitaker TL; Berry MB; Ho EL; Hargrove MS; Phillips GN; Komiyama NH; Nagai K; Olson JS
    Biochemistry; 1995 Jul; 34(26):8221-6. PubMed ID: 7599114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin acts as a helix stop signal.
    Shin HC; Merutka G; Waltho JP; Wright PE; Dyson HJ
    Biochemistry; 1993 Jun; 32(25):6348-55. PubMed ID: 8518280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amyloid fibril formation by circularly permuted and C-terminally deleted mutants.
    Corrêa DH; Ramos CH
    Int J Biol Macromol; 2011 May; 48(4):583-8. PubMed ID: 21300089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How Ala-->Gly mutations in different helices affect the stability of the apomyoglobin molten globule.
    Luo Y; Baldwin RL
    Biochemistry; 2001 May; 40(17):5283-9. PubMed ID: 11318652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular hinges in protein folding: the urea-denatured state of apomyoglobin.
    Schwarzinger S; Wright PE; Dyson HJ
    Biochemistry; 2002 Oct; 41(42):12681-6. PubMed ID: 12379110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conservation of folding pathways in evolutionarily distant globin sequences.
    Nishimura C; Prytulla S; Dyson HJ; Wright PE
    Nat Struct Biol; 2000 Aug; 7(8):679-86. PubMed ID: 10932254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Introduction of potential helix-capping residues into an engineered helical protein.
    Parker MH; Hefford MA
    Biotechnol Appl Biochem; 1998 Aug; 28(1):69-76. PubMed ID: 9693091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural characterization of non-native states of sperm whale myoglobin in aqueous ethanol or 2,2,2-trifluoroethanol media.
    Misumi Y; Terui N; Yamamoto Y
    Biochim Biophys Acta; 2002 Nov; 1601(1):75-84. PubMed ID: 12429505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Filling up the heme pocket stabilizes apomyoglobin and speeds up its folding.
    Goodman JS; Chao SH; Pogorelov TV; Gruebele M
    J Phys Chem B; 2014 Jun; 118(24):6511-8. PubMed ID: 24456280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stabilization of myoglobin by multiple alanine substitutions in helical positions.
    Lin L; Pinker RJ; Phillips GN; Kallenbach NR
    Protein Sci; 1994 Sep; 3(9):1430-5. PubMed ID: 7833805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffusive motions control the folding and unfolding kinetics of the apomyoglobin pH 4 molten globule intermediate.
    Ramos CH; Weisbuch S; Jamin M
    Biochemistry; 2007 Apr; 46(14):4379-89. PubMed ID: 17367166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redesign of artificial globins: effects of residue replacements at hydrophobic sites on the structural properties.
    Isogai Y; Ishii A; Fujisawa T; Ota M; Nishikawa K
    Biochemistry; 2000 May; 39(19):5683-90. PubMed ID: 10801318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562.
    Garcia P; Bruix M; Rico M; Ciofi-Baffoni S; Banci L; Ramachandra Shastry MC; Roder H; de Lumley Woodyear T; Johnson CM; Fersht AR; Barker PD
    J Mol Biol; 2005 Feb; 346(1):331-44. PubMed ID: 15663948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic activity, stability, unfolding, and degradation pathways of engineered and reconstituted myoglobins.
    Roncone R; Monzani E; Labò S; Sanangelantoni AM; Casella L
    J Biol Inorg Chem; 2005 Jan; 10(1):11-24. PubMed ID: 15565498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescence, and NMR study.
    Yamasaki K; Ogasahara K; Yutani K; Oobatake M; Kanaya S
    Biochemistry; 1995 Dec; 34(51):16552-62. PubMed ID: 8527428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new folding intermediate of apomyoglobin from Aplysia limacina: stepwise formation of a molten globule.
    Staniforth RA; Giannini S; Bigotti MG; Cutruzzolà F; Travaglini-Allocatelli C; Brunori M
    J Mol Biol; 2000 Apr; 297(5):1231-44. PubMed ID: 10764586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution (1)H NMR study of the influence of distal hydrogen bonding and N terminus acetylation on the active site electronic and molecular structure of Aplysia limacina cyanomet myoglobin.
    Nguyen BD; Xia Z; Cutruzzolá F; Allocatelli CT; Brunori M; La Mar GN
    J Biol Chem; 2000 Jan; 275(2):742-51. PubMed ID: 10625603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single tryptophanyl substitutions affect the structure of apomyoglobin.
    Sirangelo I; Tavassi S; Irace G
    Boll Soc Ital Biol Sper; 1998; 74(9-10):83-9. PubMed ID: 10904557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a stability determinant on the edge of the Tet repressor four-helix bundle dimerization motif.
    Schubert P; Schnappinger D; Pfleiderer K; Hillen W
    Biochemistry; 2001 Mar; 40(11):3257-63. PubMed ID: 11258944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unfolding of the loggerhead sea turtle (Caretta caretta) myoglobin: A (1)H-NMR and electronic absorbance study.
    Castelli DD; Lovera E; Ascenzi P; Fasano M
    Protein Sci; 2002 Sep; 11(9):2273-8. PubMed ID: 12192083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.