These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12405598)

  • 1. A biomechanical model of sagittal tongue bending.
    Napadow VJ; Kamm RD; Gilbert RJ
    J Biomech Eng; 2002 Oct; 124(5):547-56. PubMed ID: 12405598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramural mechanics of the human tongue in association with physiological deformations.
    Napadow VJ; Chen Q; Wedeen VJ; Gilbert RJ
    J Biomech; 1999 Jan; 32(1):1-12. PubMed ID: 10050946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical basis of lingual hydrostatic deformation.
    Gilbert RJ; Napadow VJ; Gaige TA; Wedeen VJ
    J Exp Biol; 2007 Dec; 210(Pt 23):4069-82. PubMed ID: 18025008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional anatomy of the hypoglossal innervated muscles of the rat tongue: a model for elongation and protrusion of the mammalian tongue.
    McClung JR; Goldberg SJ
    Anat Rec; 2000 Dec; 260(4):378-86. PubMed ID: 11074403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rheological motor model for vertebrate skeletal muscle in due consideration of non-linearity.
    Tamura Y; Saito M
    J Biomech; 2002 Sep; 35(9):1273-7. PubMed ID: 12163316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic prediction of tongue muscle activations using a finite element model.
    Stavness I; Lloyd JE; Fels S
    J Biomech; 2012 Nov; 45(16):2841-8. PubMed ID: 23021611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI.
    Mijailovich SM; Stojanovic B; Kojic M; Liang A; Wedeen VJ; Gilbert RJ
    J Appl Physiol (1985); 2010 Nov; 109(5):1500-14. PubMed ID: 20689096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of primary and secondary muscle fiber architecture of the bovine tongue by diffusion tensor magnetic resonance imaging.
    Wedeen VJ; Reese TG; Napadow VJ; Gilbert RJ
    Biophys J; 2001 Feb; 80(2):1024-8. PubMed ID: 11159469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical basis for lingual deformation during the propulsive phase of swallowing as determined by phase-contrast magnetic resonance imaging.
    Felton SM; Gaige TA; Reese TG; Wedeen VJ; Gilbert RJ
    J Appl Physiol (1985); 2007 Jul; 103(1):255-65. PubMed ID: 17395759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical basis for lingual muscular deformation during swallowing.
    Napadow VJ; Chen Q; Wedeen VJ; Gilbert RJ
    Am J Physiol; 1999 Sep; 277(3):G695-701. PubMed ID: 10484396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computerized biomechanical model-development of and use in studying gross body actions.
    Chaffin DB
    J Biomech; 1969 Oct; 2(4):429-41. PubMed ID: 16335142
    [No Abstract]   [Full Text] [Related]  

  • 12. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations.
    Lilly JH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):333-9. PubMed ID: 14518798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associating the mesoscale fiber organization of the tongue with local strain rate during swallowing.
    Felton SM; Gaige TA; Benner T; Wang R; Reese TG; Wedeen VJ; Gilbert RJ
    J Biomech; 2008; 41(8):1782-9. PubMed ID: 18456271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing.
    Parthasarathy V; Prince JL; Stone M; Murano EZ; Nessaiver M
    J Acoust Soc Am; 2007 Jan; 121(1):491-504. PubMed ID: 17297803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.
    Sobhani Tehrani E; Jalaleddini K; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1568-1580. PubMed ID: 28287979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical considerations of lumbricalis behavior in the human finger.
    Thomas DH; Long C; Landsmeer JM
    J Biomech; 1968 Jul; 1(2):107-15. PubMed ID: 16329298
    [No Abstract]   [Full Text] [Related]  

  • 17. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of the human leg subjected to impact loading.
    Xishi W; Turgut TS; Nuri A
    Proc Inst Mech Eng H; 2003; 217(6):491-501. PubMed ID: 14702986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating muscles underlying tongue base retraction in deglutition using muscular functional magnetic resonance imaging (mfMRI).
    Gassert RB; Pearson WG
    Magn Reson Imaging; 2016 Feb; 34(2):204-8. PubMed ID: 26523657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of fiber strain in the human tongue during speech.
    Gomez AD; Stone ML; Woo J; Xing F; Prince JL
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):312-322. PubMed ID: 32031425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.