These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 12405602)
1. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem. Haider MA; Guilak F J Biomech Eng; 2002 Oct; 124(5):586-95. PubMed ID: 12405602 [TBL] [Abstract][Full Text] [Related]
2. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem. Haider MA; Guilak F J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291 [TBL] [Abstract][Full Text] [Related]
3. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Baaijens FP; Trickey WR; Laursen TA; Guilak F Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655 [TBL] [Abstract][Full Text] [Related]
4. Finite element analysis of imposing femtonewton forces with micropipette aspiration. Shao JY Ann Biomed Eng; 2002 Apr; 30(4):546-54. PubMed ID: 12086005 [TBL] [Abstract][Full Text] [Related]
5. Influences of adhesion area and biological sample size on the estimation of Young's modulus and Poisson's ratio assessed by micropipette aspiration technique. Boudou T; Ohayon J; Picart C; Tracqui P Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5391-4. PubMed ID: 18003227 [TBL] [Abstract][Full Text] [Related]
6. An extended modeling of the micropipette aspiration experiment for the characterization of the Young's modulus and Poisson's ratio of adherent thin biological samples: numerical and experimental studies. Boudou T; Ohayon J; Arntz Y; Finet G; Picart C; Tracqui P J Biomech; 2006; 39(9):1677-85. PubMed ID: 15978599 [TBL] [Abstract][Full Text] [Related]
7. Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. Zhao R; Wyss K; Simmons CA J Biomech; 2009 Dec; 42(16):2768-73. PubMed ID: 19765713 [TBL] [Abstract][Full Text] [Related]
8. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. Kim E; Guilak F; Haider MA J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199 [TBL] [Abstract][Full Text] [Related]
9. Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. Trickey WR; Baaijens FP; Laursen TA; Alexopoulos LG; Guilak F J Biomech; 2006; 39(1):78-87. PubMed ID: 16271590 [TBL] [Abstract][Full Text] [Related]
10. Determination of the Poisson's ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration (Trickey et al., Journal of Biomechanics, 39 (2006) 78-87. Schachar RA J Biomech; 2006; 39(12):2344; author reply 2344-5. PubMed ID: 16884728 [No Abstract] [Full Text] [Related]
12. [Mechanical properties of chondrocytes isolated from normal articular cartilage: experiment with rabbit knees]. Wang XH; Wei XC; Zhang QY; Chen WY Zhonghua Yi Xue Za Zhi; 2007 Apr; 87(13):916-20. PubMed ID: 17650406 [TBL] [Abstract][Full Text] [Related]
13. Experimental Verification of the Elastic Formula for the Aspirated Length of a Single Cell Considering the Size and Compressibility of Cell During Micropipette Aspiration. Li Y; Chen J; Wang L; Guo Y; Feng J; Chen W Ann Biomed Eng; 2018 Jul; 46(7):1026-1037. PubMed ID: 29637316 [TBL] [Abstract][Full Text] [Related]
14. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. Alexopoulos LG; Haider MA; Vail TP; Guilak F J Biomech Eng; 2003 Jun; 125(3):323-33. PubMed ID: 12929236 [TBL] [Abstract][Full Text] [Related]
15. Computation of adherent cell elasticity for critical cell-bead geometry in magnetic twisting experiments. Ohayon J; Tracqui P Ann Biomed Eng; 2005 Feb; 33(2):131-41. PubMed ID: 15771267 [TBL] [Abstract][Full Text] [Related]
16. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading. Kim E; Guilak F; Haider MA J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538 [TBL] [Abstract][Full Text] [Related]
17. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization. Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080 [TBL] [Abstract][Full Text] [Related]
19. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. Jones WR; Ting-Beall HP; Lee GM; Kelley SS; Hochmuth RM; Guilak F J Biomech; 1999 Feb; 32(2):119-27. PubMed ID: 10052916 [TBL] [Abstract][Full Text] [Related]
20. The pipette aspiration applied to the local stiffness measurement of soft tissues. Aoki T; Ohashi T; Matsumoto T; Sato M Ann Biomed Eng; 1997; 25(3):581-7. PubMed ID: 9146811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]