BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12405810)

  • 1. Crystal of semiconducting quantum dots built on covalently bonded t5 [in(28)cd(6)s(54)](-12): the largest supertetrahedral cluster in solid state.
    Su W; Huang X; Li J; Fu H
    J Am Chem Soc; 2002 Nov; 124(44):12944-5. PubMed ID: 12405810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocluster with one missing core atom: a three-dimensional hybrid superlattice built from dual-sized supertetrahedral clusters.
    Wang C; Bu X; Zheng N; Feng P
    J Am Chem Soc; 2002 Sep; 124(35):10268-9. PubMed ID: 12197715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coassembly between the largest and smallest metal chalcogenide supertetrahedral clusters.
    Wang L; Wu T; Bu X; Zhao X; Zuo F; Feng P
    Inorg Chem; 2013 Mar; 52(5):2259-61. PubMed ID: 23421915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Largest Supertetrahedral Oxychalcogenide Nanocluster and Its Unique Assembly.
    Yang H; Zhang J; Luo M; Wang W; Lin H; Li Y; Li D; Feng P; Wu T
    J Am Chem Soc; 2018 Sep; 140(36):11189-11192. PubMed ID: 30088766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A large indium sulfide supertetrahedral cluster built from integration of ZnS-like tetrahedral shell with NaCl-like octahedral core.
    Wu T; Zuo F; Wang L; Bu X; Zheng ST; Ma R; Feng P
    J Am Chem Soc; 2011 Oct; 133(40):15886-9. PubMed ID: 21923195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pushing up the size limit of chalcogenide supertetrahedral clusters: two- and three-dimensional photoluminescent open frameworks from (Cu(5)In(30)S(54))(13-) clusters.
    Bu X; Zheng N; Li Y; Feng P
    J Am Chem Soc; 2002 Oct; 124(43):12646-7. PubMed ID: 12392396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pushing up the Size Limit of Metal Chalcogenide Supertetrahedral Nanocluster.
    Xu X; Wang W; Liu D; Hu D; Wu T; Bu X; Feng P
    J Am Chem Soc; 2018 Jan; 140(3):888-891. PubMed ID: 29337544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrete Supertetrahedral T5 Selenide Clusters and Their Se/S Solid Solutions: Ionic-Liquid-Assisted Precursor Route Syntheses and Photocatalytic Properties.
    Wang Y; Zhu Z; Sun Z; Hu Q; Li J; Jiang J; Huang X
    Chemistry; 2020 Feb; 26(7):1624-1632. PubMed ID: 31971636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties.
    Yang DD; Li W; Xiong WW; Li JR; Huang XY
    Dalton Trans; 2018 May; 47(17):5977-5984. PubMed ID: 29589630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three new metal chalcogenide open frameworks built through co-assembly and/or hybrid assembly from supertetrahedral T5-InOS and T3-InS nanoclusters.
    Zhang J; Liu X; Ding Y; Xue C; Wu T
    Dalton Trans; 2019 Jun; 48(22):7537-7540. PubMed ID: 31066399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of supertetrahedral T5 copper-indium sulfide clusters into a super-supertetrahedron of infinite order.
    Wang L; Wu T; Zuo F; Zhao X; Bu X; Wu J; Feng P
    J Am Chem Soc; 2010 Mar; 132(10):3283-5. PubMed ID: 20178361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superbase route to supertetrahedral chalcogenide clusters.
    Wu T; Bu X; Liao P; Wang L; Zheng ST; Ma R; Feng P
    J Am Chem Soc; 2012 Feb; 134(8):3619-22. PubMed ID: 22335388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidation of 2D Frameworks Based on Corner-Shared Supertetrahedral T5 Clusters via M
    Sun L; Zhang HY; Qi Z; Zhang XM
    Inorg Chem; 2021 Dec; 60(23):18307-18313. PubMed ID: 34797066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles.
    Hamada M; Nakanishi S; Itoh T; Ishikawa M; Biju V
    ACS Nano; 2010 Aug; 4(8):4445-54. PubMed ID: 20731430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Assembly of Different-Sized Supertetrahedral Clusters into a Unique Non-Interpenetrated Mn-In-S Open Framework with Large Cavity.
    Wang H; Wang W; Hu D; Luo M; Xue C; Li D; Wu T
    Inorg Chem; 2018 Jun; 57(11):6710-6715. PubMed ID: 29792414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of the optical properties with size and composition of small, isolated Cd
    Jäger M; Schäfer R
    J Comput Chem; 2021 Feb; 42(5):303-309. PubMed ID: 33300611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size dependence in tunneling spectra of PbSe quantum-dot arrays.
    Ou YC; Cheng SF; Jian WB
    Nanotechnology; 2009 Jul; 20(28):285401. PubMed ID: 19546498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Largest molecular clusters in the supertetrahedral Tn series.
    Wu T; Wang L; Bu X; Chau V; Feng P
    J Am Chem Soc; 2010 Aug; 132(31):10823-31. PubMed ID: 20681716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystalline superlattices from single-sized quantum dots.
    Zheng N; Bu X; Lu H; Zhang Q; Feng P
    J Am Chem Soc; 2005 Aug; 127(34):11963-5. PubMed ID: 16117534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Sodium-Ion Conductivity in Supertetrahedral Phosphidosilicates.
    Haffner A; Hatz AK; Moudrakovski I; Lotsch BV; Johrendt D
    Angew Chem Int Ed Engl; 2018 May; 57(21):6155-6160. PubMed ID: 29611884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.