BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12405810)

  • 21. Templating growth of gold nanostructures with a CdSe quantum dot array.
    Paul N; Metwalli E; Yao Y; Schwartzkopf M; Yu S; Roth SV; Müller-Buschbaum P; Paul A
    Nanoscale; 2015 Jun; 7(21):9703-14. PubMed ID: 25960066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BaRh2Si9--a new clathrate with a rhodium-silicon framework.
    Jung W; Ormeci A; Schnelle W; Nguyen HD; Baitinger M; Grin Y
    Dalton Trans; 2014 Feb; 43(5):2140-6. PubMed ID: 24285253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling.
    Geiregat P; Justo Y; Abe S; Flamee S; Hens Z
    ACS Nano; 2013 Feb; 7(2):987-93. PubMed ID: 23297750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, structure and band gap energy of covalently linked cluster-assembled materials.
    Mandal S; Reber AC; Qian M; Liu R; Saavedra HM; Sen S; Weiss PS; Khanna SN; Sen A
    Dalton Trans; 2012 Oct; 41(40):12365-77. PubMed ID: 22940817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Water Dispersibility of Discrete Chalcogenide Nanoclusters with a Sodalite-Net Loose-Packing Pattern in a Crystal Lattice.
    Xue C; Zhang L; Wang X; Hu D; Wang XL; Zhang J; Zhou R; Li DS; Su H; Wu T
    Inorg Chem; 2020 Nov; 59(21):15587-15594. PubMed ID: 32410454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of Bi2Te3 quantum dots/rods in glass: a unique highly stable nanosystem with novel functionality for high performance magneto optical devices.
    Panmand RP; Kumar G; Mahajan SM; Shroff N; Kale BB; Gosavi SW
    Phys Chem Chem Phys; 2012 Dec; 14(47):16236-42. PubMed ID: 23111316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene Quantum Dot Solid Sheets: Strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures.
    Bharathi G; Nataraj D; Premkumar S; Sowmiya M; Senthilkumar K; Thangadurai TD; Khyzhun OY; Gupta M; Phase D; Patra N; Jha SN; Bhattacharyya D
    Sci Rep; 2017 Sep; 7(1):10850. PubMed ID: 28883449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designing artificial 2D crystals with site and size controlled quantum dots.
    Xie X; Kang J; Cao W; Chu JH; Gong Y; Ajayan PM; Banerjee K
    Sci Rep; 2017 Aug; 7(1):9965. PubMed ID: 28855567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A consolidated account of electrochemical determination of band structure parameters in II-VI semiconductor quantum dots: a tutorial review.
    Ingole PP
    Phys Chem Chem Phys; 2019 Feb; 21(9):4695-4716. PubMed ID: 30775741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computationally Designed Crystal Structures of the Supertetrahedral Ga
    Getmanskii IV; Zaitsev SA; Koval VV; Minyaev RM; Minkin VI
    J Phys Chem A; 2021 Aug; 125(30):6556-6561. PubMed ID: 34291645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Homochiral {Co
    Du W; Bai YL; Yin X; Fang J; Zhu S; Tao J
    Chemistry; 2017 Jun; 23(33):8025-8031. PubMed ID: 28421635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-ferroelectric polarization transitions in quantum-dot-quantum-well arrays.
    Brown E; Mullen KJ
    J Phys Condens Matter; 2011 Nov; 23(45):455301. PubMed ID: 22037054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid.
    Zhang H; Fang W; Wang W; Qian N; Ji X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6927-6936. PubMed ID: 30675780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionothermal Access to Defined Oligomers of Supertetrahedral Selenido Germanate Clusters.
    Wu Z; Nußbruch I; Nier S; Dehnen S
    JACS Au; 2022 Jan; 2(1):204-213. PubMed ID: 35098237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.