These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 12405856)
1. An electrostatic model for the frequency shifts in the carbonmonoxy stretching band of myoglobin: correlation of hydrogen bonding and the stark tuning rate. Franzen S J Am Chem Soc; 2002 Nov; 124(44):13271-81. PubMed ID: 12405856 [TBL] [Abstract][Full Text] [Related]
2. Effect of a charge relay on the vibrational frequencies of carbonmonoxy iron porphine adducts: the coupling of changes in axial ligand bond strength and porphine core size. Franzen S J Am Chem Soc; 2001 Dec; 123(50):12578-89. PubMed ID: 11741422 [TBL] [Abstract][Full Text] [Related]
3. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants. Peterson ES; Friedman JM; Chien EY; Sligar SG Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545 [TBL] [Abstract][Full Text] [Related]
4. Iron twin-coronet porphyrins as models of myoglobin and hemoglobin: amphibious electrostatic effects of overhanging hydroxyl groups for successful CO/O2 discrimination. Tani F; Matsu-ura M; Ariyama K; Setoyama T; Shimada T; Kobayashi S; Hayashi T; Matsuo T; Hisaeda Y; Naruta Y Chemistry; 2003 Feb; 9(4):862-70. PubMed ID: 12584701 [TBL] [Abstract][Full Text] [Related]
5. Structural determinants of the stretching frequency of CO bound to myoglobin. Li T; Quillin ML; Phillips GN; Olson JS Biochemistry; 1994 Feb; 33(6):1433-46. PubMed ID: 8312263 [TBL] [Abstract][Full Text] [Related]
6. Synergistic Effect of Distal Polar Interactions in Myoglobin and Their Structural Consequences. Watanabe M; Kanai Y; Nakamura S; Nishimura R; Shibata T; Momotake A; Yanagisawa S; Ogura T; Matsuo T; Hirota S; Neya S; Suzuki A; Yamamoto Y Inorg Chem; 2018 Nov; 57(22):14269-14279. PubMed ID: 30387349 [TBL] [Abstract][Full Text] [Related]
7. Identification of histidine 77 as the axial heme ligand of carbonmonoxy CooA by picosecond time-resolved resonance Raman spectroscopy. Uchida T; Ishikawa H; Ishimori K; Morishima I; Nakajima H; Aono S; Mizutani Y; Kitagawa T Biochemistry; 2000 Oct; 39(42):12747-52. PubMed ID: 11041838 [TBL] [Abstract][Full Text] [Related]
8. Is the CO adduct of myoglobin bent, and does it matter? Spiro TG; Kozlowski PM Acc Chem Res; 2001 Feb; 34(2):137-44. PubMed ID: 11263872 [TBL] [Abstract][Full Text] [Related]
9. Theoretical study of the discrimination between O(2) and CO by myoglobin. Sigfridsson E; Ryde U J Inorg Biochem; 2002 Jul; 91(1):101-15. PubMed ID: 12121767 [TBL] [Abstract][Full Text] [Related]
10. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
11. Distal pocket polarity in ligand binding to myoglobin: deoxy and carbonmonoxy forms of a threonine68(E11) mutant investigated by X-ray crystallography and infrared spectroscopy. Cameron AD; Smerdon SJ; Wilkinson AJ; Habash J; Helliwell JR; Li T; Olson JS Biochemistry; 1993 Dec; 32(48):13061-70. PubMed ID: 8241160 [TBL] [Abstract][Full Text] [Related]
12. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode. Gilch H; Schweitzer-Stenner R; Dreybrodt W Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641 [TBL] [Abstract][Full Text] [Related]
13. Structural assignment of spectra by characterization of conformational substates in bound MbCO. Devereux M; Meuwly M Biophys J; 2009 Jun; 96(11):4363-75. PubMed ID: 19486661 [TBL] [Abstract][Full Text] [Related]
14. The origin of stark splitting in the initial photoproduct state of MbCO. Nienhaus K; Olson JS; Franzen S; Nienhaus GU J Am Chem Soc; 2005 Jan; 127(1):40-1. PubMed ID: 15631438 [TBL] [Abstract][Full Text] [Related]
15. On the significance of hydrogen bonds for the discrimination between CO and O2 by myoglobin. Sigfridsson E; Ryde U J Biol Inorg Chem; 1999 Feb; 4(1):99-110. PubMed ID: 10499107 [TBL] [Abstract][Full Text] [Related]
16. Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: a QM/MM density functional study. Rovira C; Schulze B; Eichinger M; Evanseck JD; Parrinello M Biophys J; 2001 Jul; 81(1):435-45. PubMed ID: 11423426 [TBL] [Abstract][Full Text] [Related]
18. Theoretical investigation of infrared spectra and pocket dynamics of photodissociated carbonmonoxy myoglobin. Nutt DR; Meuwly M Biophys J; 2003 Dec; 85(6):3612-23. PubMed ID: 14645054 [TBL] [Abstract][Full Text] [Related]
19. FTIR and resonance Raman studies of nitric oxide binding to H93G cavity mutants of myoglobin. Thomas MR; Brown D; Franzen S; Boxer SG Biochemistry; 2001 Dec; 40(49):15047-56. PubMed ID: 11732927 [TBL] [Abstract][Full Text] [Related]
20. A test of the role of electrostatic interactions in determining the CO stretch frequency in carbonmonoxymyoglobin. Decatur SM; Boxer SG Biochem Biophys Res Commun; 1995 Jul; 212(1):159-64. PubMed ID: 7612000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]