BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12405993)

  • 1. Synaptic plasticity in the acoustic startle pathway: the neuronal basis for short-term habituation?
    Weber M; Schnitzler HU; Schmid S
    Eur J Neurosci; 2002 Oct; 16(7):1325-32. PubMed ID: 12405993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group III metabotropic glutamate receptors inhibit startle-mediating giant neurons in the caudal pontine reticular nucleus but do not mediate synaptic depression/short-term habituation of startle.
    Schmid S; Brown T; Simons-Weidenmaier N; Weber M; Fendt M
    J Neurosci; 2010 Aug; 30(31):10422-30. PubMed ID: 20685984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle.
    Geis HR; Schmid S
    Neurosci Res; 2011 Oct; 71(2):114-23. PubMed ID: 21726589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway.
    Simons-Weidenmaier NS; Weber M; Plappert CF; Pilz PK; Schmid S
    BMC Neurosci; 2006 May; 7():38. PubMed ID: 16684348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular mechanisms of the trigeminally evoked startle response.
    Schmid S; Simons NS; Schnitzler HU
    Eur J Neurosci; 2003 Apr; 17(7):1438-44. PubMed ID: 12713646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit?
    Lingenhöhl K; Friauf E
    J Neurosci; 1994 Mar; 14(3 Pt 1):1176-94. PubMed ID: 8120618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats.
    Zaman T; De Oliveira C; Smoka M; Narla C; Poulter MO; Schmid S
    J Neurosci; 2017 Apr; 37(17):4540-4551. PubMed ID: 28348135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesencephalic reticular formation lesions made after habituation training abolish long-term habituation of the acoustic startle response in rats.
    Jordan WP
    Behav Neurosci; 1989 Aug; 103(4):805-15. PubMed ID: 2765185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABA(B) receptor-mediated heterosynaptic depression of excitatory synaptic transmission in rat frontal neocortex.
    Chu Z; Hablitz JJ
    Brain Res; 2003 Jan; 959(1):39-49. PubMed ID: 12480156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons of the superior olivary complex do not excite startle-mediating neurons in the caudal pontine reticular formation.
    Schmid S; Weber M
    Neuroreport; 2002 Dec; 13(17):2223-7. PubMed ID: 12488801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine receptors in the caudal pontine reticular formation: are they important for the inhibition of the acoustic startle response?
    Koch M; Friauf E
    Brain Res; 1995 Feb; 671(1):63-72. PubMed ID: 7728534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn.
    Gerber G; Zhong J; Youn D; Randic M
    Neuroscience; 2000; 100(2):393-406. PubMed ID: 11008177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of homosynaptic long-term depression at spinal synapses of sensory a delta-fibers requires activation of metabotropic glutamate receptors.
    Chen J; Sandkühler J
    Neuroscience; 2000; 98(1):141-8. PubMed ID: 10858620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.
    Shen KZ; Zhu ZT; Munhall A; Johnson SW
    Synapse; 2003 Dec; 50(4):314-9. PubMed ID: 14556236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olfactory nerve-evoked, metabotropic glutamate receptor-mediated synaptic responses in rat olfactory bulb mitral cells.
    Ennis M; Zhu M; Heinbockel T; Hayar A
    J Neurophysiol; 2006 Apr; 95(4):2233-41. PubMed ID: 16394070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellar vermis: essential for long-term habituation of the acoustic startle response.
    Leaton RN; Supple WF
    Science; 1986 Apr; 232(4749):513-5. PubMed ID: 3961494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mesencephalic reticular formation lesions on habituation of startle and lick suppression responses in the rat.
    Jordan WP; Leaton RN
    J Comp Physiol Psychol; 1982 Apr; 96(2):170-83. PubMed ID: 7068983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axons and synapses mediating startle-like responses evoked by electrical stimulation of the reticular formation in rats: symmetric and asymmetric collision effects.
    Yeomans JS; Hempel CM; Chapman CA
    Brain Res; 1993 Jul; 617(2):309-19. PubMed ID: 8402159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Habituation and prestimulus inhibition of the auditory startle reflex in decerebrate rats.
    Fox JE
    Physiol Behav; 1979 Aug; 23(2):291-7. PubMed ID: 504419
    [No Abstract]   [Full Text] [Related]  

  • 20. NMDA receptors in the pontine brainstem are necessary for fear potentiation of the startle response.
    Fendt M; Koch M; Schnitzler HU
    Eur J Pharmacol; 1996 Dec; 318(1):1-6. PubMed ID: 9007504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.