These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12405998)

  • 1. Attentional demands reflect learning-induced alterations of bimanual coordination dynamics.
    Temprado JJ; Monno A; Zanone PG; Kelso JA
    Eur J Neurosci; 2002 Oct; 16(7):1390-4. PubMed ID: 12405998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of attention on phase transitions between bimanual coordination patterns: a behavioral and cost analysis in humans.
    Monno A; Chardenon A; Temprado JJ; Zanone PG; Laurent M
    Neurosci Lett; 2000 Apr; 283(2):93-6. PubMed ID: 10739883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of force production and trial duration on bimanual performance and attentional demands in a rhythmic coordination task.
    Murian A; Deschamps T; Temprado JJ
    Motor Control; 2008 Jan; 12(1):21-37. PubMed ID: 18209247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covariation of attentional cost and stability provides further evidence for two routes to learning new coordination patterns.
    Zanone PG; Kostrubiec V; Albaret JM; Temprado JJ
    Acta Psychol (Amst); 2010 Feb; 133(2):107-18. PubMed ID: 19939341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of an exhausting muscle exercise on bimanual coordination stability and attentional demands.
    Murian A; Deschamps T; Bourbousson J; Temprado JJ
    Neurosci Lett; 2008 Feb; 432(1):64-8. PubMed ID: 18191895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acquisition of movement skills: practice enhances the dynamic stability of bimanual coordination.
    Smethurst CJ; Carson RG
    Hum Mov Sci; 2001 Nov; 20(4-5):499-529. PubMed ID: 11750675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of biomechanical and neuromuscular constraints on pattern stability and attentional demands in a bimanual coordination task in human subjects.
    Temprado JJ; Chardenon A; Laurent M
    Neurosci Lett; 2001 May; 303(2):127-31. PubMed ID: 11311509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of performance trade-offs and dual-task interference in bimanual coordination: an ERP investigation.
    Matthews A; Garry MI; Martin F; Summers J
    Neurosci Lett; 2006 May; 400(1-2):172-6. PubMed ID: 16530954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolic and cognitive energy costs of stabilising a high-energy interlimb coordination task.
    Lay BS; Sparrow WA; O'Dwyer NJ
    Hum Mov Sci; 2005; 24(5-6):833-48. PubMed ID: 16337022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay of attention and bimanual coordination dynamics.
    Monno A; Temprado JJ; Zanone PG; Laurent M
    Acta Psychol (Amst); 2002 Jun; 110(2-3):187-211. PubMed ID: 12102105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shared dynamics of attentional cost and pattern stability.
    Zanone PG; Monno A; Temprado JJ; Laurent M
    Hum Mov Sci; 2001 Dec; 20(6):765-89. PubMed ID: 11792439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional loads associated with interlimb interactions underlying rhythmic bimanual coordination.
    Ridderikhoff A; Peper CL; Beek PJ
    Cognition; 2008 Dec; 109(3):372-88. PubMed ID: 19014874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The simplest acquisition protocol is sometimes the best protocol: performing and learning a 1:2 bimanual coordination task.
    Panzer S; Kennedy D; Wang C; Shea CH
    Exp Brain Res; 2018 Feb; 236(2):539-550. PubMed ID: 29243135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-task interference during initial learning of a new motor task results from competition for the same brain areas.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Neuropsychologia; 2010 Jul; 48(9):2517-27. PubMed ID: 20434467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related differences and the role of augmented visual feedback in learning a bimanual coordination pattern.
    Wishart LR; Lee TD; Cunningham SJ; Murdoch JE
    Acta Psychol (Amst); 2002 Jun; 110(2-3):247-63. PubMed ID: 12102108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and attentional energy costs of interlimb coordination.
    Sparrow WA; Lay BS; O'Dwyer NJ
    J Mot Behav; 2007 Jul; 39(4):259-75. PubMed ID: 17664169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions.
    Carter MJ; Maslovat D; Carlsen AN
    J Neurophysiol; 2015 Feb; 113(3):780-5. PubMed ID: 25376785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The learning of 90° continuous relative phase with and without Lissajous feedback: external and internally generated bimanual coordination.
    Kovacs AJ; Shea CH
    Acta Psychol (Amst); 2011 Mar; 136(3):311-20. PubMed ID: 21216384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attentional costs of coordinating homologous and non-homologous limbs.
    Hiraga CY; Summers JJ; Temprado JJ
    Hum Mov Sci; 2004 Oct; 23(3-4):415-30. PubMed ID: 15541526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-shaped motor learning and nonequilibrium phase transitions.
    Liu YT; Newell KM
    J Exp Psychol Hum Percept Perform; 2015 Apr; 41(2):403-14. PubMed ID: 25665087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.